首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   7篇
  国内免费   2篇
测绘学   4篇
大气科学   7篇
地球物理   39篇
地质学   48篇
海洋学   32篇
天文学   25篇
综合类   1篇
自然地理   5篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   4篇
  2018年   9篇
  2017年   3篇
  2016年   9篇
  2015年   12篇
  2014年   10篇
  2013年   9篇
  2012年   8篇
  2011年   11篇
  2010年   11篇
  2009年   12篇
  2008年   9篇
  2007年   2篇
  2006年   8篇
  2005年   7篇
  2004年   11篇
  2003年   6篇
  2002年   4篇
  2000年   2篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1978年   1篇
排序方式: 共有161条查询结果,搜索用时 31 毫秒
121.
Clifftop coastal boulders transported by storm waves or tsunamis have been reported around the world. Although numerical calculation of boulder transport is a strong tool for the identification of tsunami or storm boulders, and for estimation of the wave size emplacing boulders, models which can reasonably solve boulder transport from below a cliff or from a cliff-edge onto a cliff-top do not yet exist. In this study, we developed a new numerical formulation for cliff-top deposition of boulders from the cliff edge or below the cliff, with validation from laboratory tests. We then applied the model using storm and tsunami wave forcing to simulate the observed boulder deposits at the northwest coast of Hachijo Island, Japan. Using the model, the actual distribution of boulders was explained well using a reasonable storm wave height without assumption of anomalously high-water level by storm surge. Results show that boulder transport from the cliff edge or under the cliff onto the cliff-top was possible from a tsunami with periods of 5~10 min or storm waves with no storm surge. However, the actual distribution of boulders on the cliff was explained only by storm waves, but not by tsunami. Therefore, the boulders distributed at this site are likely of storm wave origin. Our developed model for the boulder transport calculation can be useful for identifying a boulder's origin and can reasonably calculate cliff-top deposition of boulders by tsunami and storm waves. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   
122.
Flow fields in Shizugawa Bay on the Sanriku ria coast, which faces the Pacific Ocean, were investigated using hydrographic observations for the purpose of understanding oceanographic conditions and the process of water exchanges in the bay after the 2011 earthquake off the Pacific coast of Tohoku. In spring to summer, density-driven surface outflow is part of estuarine circulation and is induced by a pressure gradient force under larger longitudinal gradients in density along with lower salinity water in the innermost part of the bay, regardless of wind forcing. In winter to summer, another density-driven current with a thermal structure is induced by a pressure gradient force under the smaller longitudinal density gradients in calm wind conditions. Particularly in winter, Tsugaru Warm Current water can be transported in the surface layer inside the bay. Wind-driven bay-scale circulation with downwind and upwind currents in the surface and deeper layers, respectively, is induced by strong longitudinal wind forcing under the smaller longitudinal density gradients, irrespective of season. Particularly in fall to spring, this circulation can cause the intrusions of oceanic water associated with Oyashio water and Tsugaru Warm Current water in the deeper layer. These results suggest that wind- and density-driven currents can produce the active exchange of water from inside and outside the bay throughout the year.  相似文献   
123.
An accurate prediction of ocean tides in southeast Alaska is developed using a regional, barotropic ocean model with a finite difference scheme. The model skill is verified by the observational tidal harmonics in southeast Alaska including Glacier Bay. The result is particularly improved in Glacier Bay compared to the previous model described by Foreman et al. (2000). The model bathymetry dominates the model skill. We re-estimate tidal energy dissipation in the Alaska Panhandle and suggest a value for tidal energy dissipation of 3.4 GW associated with the M2 constituent which is 1.5 times the estimation of Foreman et al. (2000). A large portion of the M2 energy budget entering through Chatham Strait is dissipated in the vicinity of Glacier Bay. Moreover, it is shown that the developed model has the potential to correct the ocean tide loading effect in geodetic data more efficiently than the model of Foreman et al. (2000), especially around Glacier Bay.  相似文献   
124.
125.
126.
127.
128.
The effect of pH and Gibbs energy on the dissolution rate of a synthetic Na-montmorillonite was investigated by means of flow-through experiments at 25 and 80 °C at pH of 7 and 9. The dissolution reaction took place stoichiometrically at 80 °C, whereas at 25 °C preferential release of Mg over Si and Al was observed. The TEM-EDX analyses (transmission electronic microscopy with quantitative chemical analysis) of the dissolved synthetic phase at 25 °C showed the presence of newly formed Si-rich phases, which accounts for the Si deficit. At low temperature, depletion of Si concentration was attributed to incongruent clay dissolution with the formation of detached Si tetrahedral sheets (i.e., alteration product) whereas the Al behaviour remains uncertain (e.g., possible incorporation into Al-rich phases). Hence, steady-state rates were based on the release of Mg. Ex situ AFM measurements were used to investigate the variations in reactive surface area. Accordingly, steady-state rates were normalized to the initial edge surface area (11.2 m2 g−1) and used to propose the dissolution rate law for the dissolution reactions as a function of ΔGr at 25 °C and pH∼9:
  相似文献   
129.
The Bay of Fundy in eastern Canada has the highest tides in the world. Harnessing the tidal energy in the region has long been considered. In this study, the effects of tidal in-stream energy extraction in the Minas Passage on the three-dimensional (3D) tidal circulation in the Bay of Fundy (BoF) and the Gulf of Maine (GoM) are examined using a nested-grid coastal ocean circulation model based on the Princeton Ocean Model (POM). The nested-grid model consists of a coarse-resolution (~4.5 km) parent sub-model for the GoM and a high-resolution (~1.5 km) child sub-model for the BoF. The tidal in-stream energy extraction in the model is parameterized in terms of nonlinear Rayleigh friction in the momentum equation. A suite of numerical experiments are conducted to determine the ranges of extractable tidal in-stream energy and resulting effects on the 3D tidal circulation over the Bay of Fundy and the Gulf of Maine (BoF-GoM) in terms of the Rayleigh friction coefficients. The 3D model results suggest that the maximum energy extraction in the Minas Passage increases tidal elevations and tidal currents throughout the GoM and reduces tidal elevations and circulation in the upper BoF, especially in the Minas Basin. The far-field effect of tidal energy extraction in the Passage on the 3D tidal circulation in the BoF-GoM is examined in two cases of harnessing tidal in-stream energy from (a) the entire water column and (b) the lower water column within 20 m above the bottom in the Passage. The 3D model results demonstrate that tidal in-stream energy extraction from the lower water column has less impact on the tidal elevations and circulation in the BoF-GoM than the energy extraction from the whole water column in the Minas Passage.  相似文献   
130.
We have investigated the high-pressure behavior of cristobalite in helium by powder X-ray diffraction. Cristobalite transformed to a new phase at about 8 GPa. This phase is supposed to have a molar volume of about 30 % larger than cristobalite, suggesting the dissolution of helium atoms in its interstitial voids. On further compression, the new phase transformed to a different phase which showed an X-ray diffraction pattern similar to cristobalite X-I at about 21 GPa. On the other hand, when the new phase was decompressed, it transformed to another new phase at about 7 GPa, which is also supposed to have a molar volume of about 25 % larger than cristobalite. On further decompression, the second new phase transformed to cristobalite II at about 2 GPa. In contrast to cristobalite, quartz did not show anomalous behavior in helium. The behavior of cristobalite in helium was also consistent with that in other mediums up to about 8 GPa, where the volume of cristobalite became close to that of quartz. These results suggest that dissolution of helium may be controlled not only by the density (amount of voids) but also by the network structure of SiO4 tetrahedra (topology of voids).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号