首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   564篇
  免费   21篇
  国内免费   10篇
测绘学   14篇
大气科学   23篇
地球物理   138篇
地质学   190篇
海洋学   26篇
天文学   151篇
综合类   1篇
自然地理   52篇
  2021年   11篇
  2020年   12篇
  2019年   13篇
  2018年   18篇
  2017年   8篇
  2016年   19篇
  2015年   14篇
  2014年   12篇
  2013年   29篇
  2012年   26篇
  2011年   23篇
  2010年   20篇
  2009年   25篇
  2008年   29篇
  2007年   12篇
  2006年   21篇
  2005年   17篇
  2004年   14篇
  2003年   15篇
  2002年   24篇
  2001年   10篇
  2000年   18篇
  1999年   7篇
  1998年   11篇
  1997年   11篇
  1996年   13篇
  1995年   12篇
  1994年   10篇
  1993年   16篇
  1992年   12篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   6篇
  1985年   13篇
  1984年   6篇
  1983年   5篇
  1982年   5篇
  1981年   5篇
  1980年   6篇
  1979年   9篇
  1978年   7篇
  1977年   6篇
  1976年   7篇
  1975年   7篇
  1974年   2篇
  1970年   2篇
  1969年   2篇
排序方式: 共有595条查询结果,搜索用时 31 毫秒
71.
72.
73.
The Allende meteorite has been examined with a view to applying thermoluminescence (TL) to the study of a meteorite's passage through the atmosphere. At least three kinds of TL-bearing minerals are present. A strong peak at 140°C is due to forsterite, and one at 200°C is probably caused by cordierite. By far the most intense TL comes from an alteration product associated with gehlenite.In the 4-cm diameter meteorite examined the 200°C TL varied in intensity across the stone, showing it to be produced by fragmentation. Temperature gradients induced by atmospheric heating can also be derived, and indicate the orientation of the meteorite. Together with fusion crust measurements these results enable the final phase of the meteorite's passage through the atmosphere to be delineated.  相似文献   
74.
75.
We use cosmogenic 10Be surface exposure age techniques at a locality close to Rannoch Moor, western Scottish Highlands, in order to establish the age and chronology of its most recent glaciation. Glacial erratics and an in situ bedrock quartz vein sampled from this site—the summit of Beinn Inverveigh—have yielded zero‐erosion exposure ages of 12.9 ± 1.5 ka to 11.6 ± 1.0 ka, implying complete ice cover of the mountain during the Younger Dryas, or Loch Lomond Stadial. These results fit closely with published 14C dates that bracket the maximum (lateral) extent of ice cap outlet glaciers, and are the first internally consistent ages to specifically address this period of glaciation in Scotland. Furthermore, the dates imply that previous palaeoglaciological reconstructions for this area may have underestimated both the thickness of the former ice cap and, by implication, its volume. © British Geological Survey/Natural Environment Research Council copyright 2007. Reproduced with the permission of BGS/NERC. Published by John Wiley & Sons, Ltd.  相似文献   
76.
The Ragland, New Mexico chondrite was found in 1978, and consists of a single stone of 12.16 kg that broke into three pieces. The stone is moderately weathered and has a pronounced chondritic texture. Bulk composition favors an LL classification, and modal analysis and oxygen isotopic composition are consistent with this. The thermoluminescence sensitivity of 0.056 ± 0.020 normalized to Dhajala, compositional variability of olivine (mean Fa 18.3, σ = 10.1) and low-Ca pyroxene (mean Fs 14.6, σ = 6.7), and Ca concentrations in olivine indicate metamorphic subtype 3.4 ± 0.1. The isotopically heavy oxygen composition, which is characteristic of subtypes 3.0–3.1, may be a primary characteristic and not a result of weathering. Low concentrations of radiogenic 40Ar and planetary 36Ar suggest noble gas loss.  相似文献   
77.
We present a study of the long-term evolution of the cloud of aerosols produced in the atmosphere of Jupiter by the impact of an object on 19 July 2009 (Sánchez-Lavega, A. et al. [2010]. Astrophys. J. 715, L155-L159). The work is based on images obtained during 5 months from the impact to 31 December 2009 taken in visible continuum wavelengths and from 20 July 2009 to 28 May 2010 taken in near-infrared deep hydrogen-methane absorption bands at 2.1-2.3 μm. The impact cloud expanded zonally from ∼5000 km (July 19) to 225,000 km (29 October, about 180° in longitude), remaining meridionally localized within a latitude band from 53.5°S to 61.5°S planetographic latitude. During the first two months after its formation the site showed heterogeneous structure with 500-1000 km sized embedded spots. Later the reflectivity of the debris field became more homogeneous due to clump mergers. The cloud was mainly dispersed in longitude by the dominant zonal winds and their meridional shear, during the initial stages, localized motions may have been induced by thermal perturbation caused by the impact’s energy deposition. The tracking of individual spots within the impact cloud shows that the westward jet at 56.5°S latitude increases its eastward velocity with altitude above the tropopause by 5-10 m s−1. The corresponding vertical wind shear is low, about 1 m s−1 per scale height in agreement with previous thermal wind estimations. We found evidence for discrete localized meridional motions with speeds of 1-2 m s−1. Two numerical models are used to simulate the observed cloud dispersion. One is a pure advection of the aerosols by the winds and their shears. The other uses the EPIC code, a nonlinear calculation of the evolution of the potential vorticity field generated by a heat pulse that simulates the impact. Both models reproduce the observed global structure of the cloud and the dominant zonal dispersion of the aerosols, but not the details of the cloud morphology. The reflectivity of the impact cloud decreased exponentially with a characteristic timescale of 15 days; we can explain this behavior with a radiative transfer model of the cloud optical depth coupled to an advection model of the cloud dispersion by the wind shears. The expected sedimentation time in the stratosphere (altitude levels 5-100 mbar) for the small aerosol particles forming the cloud is 45-200 days, thus aerosols were removed vertically over the long term following their zonal dispersion. No evidence of the cloud was detected 10 months after the impact.  相似文献   
78.
In order to investigate the formation of martian gullies and the stability of fluids on Mars, we examined about 120 gully images. Twelve HiRISE images contained a sufficient number of Transverse Aeolian Ridges (TARs) associated with the gullies to make the following measurements: overall gully length, length of the alcove, channel and apron, and we also measured the frequency of nearby TARs. Six of the 12 images examined showed a statistically significant negative correlation between overall gully length (alcove, channel and apron length) and TAR frequency. Previous experimental work from our group has shown that at temperatures below ∼200 K, evaporation rate increases by about an order of magnitude as wind speed increases from 0 to ∼15 m/s. Thus the negative correlations we observe between gully length and dune frequency can be explained by formation at temperatures below ∼200 K where wind speed/evaporation is a factor governing gully length. In these cases evaporation of the fluid carving the gully was a constraint on their dimensions. Cases where there is no correlation between gully length and TAR frequency, can be explained by formation at temperatures >200 K. The temperatures are consistent with Global Circulation Model and Thermal Emission Spectrometer (TES) data for these latitudes. The temperatures suggested by these trends are consistent with the fluid responsible for gully formation being a strong brine, such as Fe2(SO4)3 which has a eutectic temperature of ∼200 K. We also find that formation timescales for gullies are 105-106 years.  相似文献   
79.
Tidal currents derived from current meter measurements are compared with the output from a barotropic tidal model of the New Zealand region. For the semi‐diurnal constituents there was very good agreement for the M2 tide and good agreement for the S2 tide. For the diurnal constituents (Kl, Ol) it was found that as the amplitude of the constituents decreased so did both the model/observation agreement and the accuracy of the observed tidal ellipse parameters. Consequently it was not possible to decide whether differences arose through shortcomings in the model or in the data. However, the overall performance of the model as a prognostic tool for ocean tidal current simulation appears to be good.  相似文献   
80.
Sea‐level data from two sites in northern New Zealand, along with the Southern Oscillation Index (SOI), are analysed for interannual and decadal variability using wavelets. The analysis shows, using statistically significant wavelet power, there is a significant relationship between mean sea level (MSL) and SOI. However, the relationship is highly variable, both in magnitude and in the range of time‐scales over which it occurs. This non‐stationarity necessitates the use of techniques such as wavelets for analysis. An interdecadal response in MSL around northern New Zealand has been isolated, with shifts occurring in 1950 and the late 1970s. This behaviour in MSL appears to coincide with shifts in the Pacific Decadal Oscillation, thought previously to be largely centred in the North Pacific. A strong correlation between SOI and sea surface temperature (SST) is also demonstrated. This relationship appears to be stable in magnitude (a large change in SOI produces a large change in SST) and to occur over the same range of time‐scales. More SST and MSL data are required for other parts of New Zealand to determine whether these findings apply elsewhere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号