首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   17篇
  国内免费   5篇
测绘学   7篇
大气科学   3篇
地球物理   44篇
地质学   56篇
海洋学   5篇
天文学   9篇
综合类   4篇
自然地理   3篇
  2023年   1篇
  2022年   9篇
  2021年   4篇
  2020年   6篇
  2019年   2篇
  2018年   22篇
  2017年   11篇
  2016年   14篇
  2015年   10篇
  2014年   9篇
  2013年   16篇
  2012年   6篇
  2011年   6篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  1999年   1篇
  1998年   2篇
  1989年   3篇
  1988年   2篇
排序方式: 共有131条查询结果,搜索用时 15 毫秒
31.
Mountainous torrents often carry large amounts of loose materials into the rivers, thus causing strong sediment transport. Experimentally it was found for the first time that when the intensive sediment motion occurs downstream over a gentle slope, the siltation of the riverbed is induced and the sediment particles can move upstream rapidly in the form of a retrograde sand wave, resulting in a higher water level along the river. To further study the complex mechanisms of this problem, a sediment mass model in the framework of the Smoothed Particle Hydrodynamics(SPH) method was presented to simulate the riverbed evolution, sediment particle motion, and the generation and development of dynamic hydraulic jump under the condition of sufficient sediment supply over a steep slope with varying angles. Because the sediment is not a continuous medium, the marker particle tracking approach was proposed to represent a piece of sediment with a marked sediment particle. The twophase SPH model realizes the interaction between the sediment and fluid by moving the bed boundary particles up and down, so it can reasonably treat the fluid-sediment interfaces with high CPU efficiency. The critical triggering condition of sediment motion, the propagation of the hydraulic jump and the initial siltation position were all systematically studied. The experimental and numerical results revealed the extra disastrous sediment effect in a mountainous flood. The findings will be useful references to the disaster prevention and mitigation in mountainous rivers.  相似文献   
32.
In this paper a geometric computational model (GCM) has been developed for calculating the effect of longwall face on the extension of excavation-damaged zone (EDZ) above the gate roadways (main and tail gates), considering the advance longwall mining method. In this model, the stability of gate roadways are investigated based on loading effects due to EDZ and caving zone (CZ) above the longwall face, which can extend the EDZ size. The structure of GCM depends on four important factors: (1) geomechanical properties of hanging wall, (2) dip and thickness of coal seam, (3) CZ characteristics, and (4) pillar width. The investigations demonstrated that the extension of EDZ is a function of pillar width. Considering the effect of pillar width, new mathematical relationships were presented to calculate the face influence coefficient and characteristics of extended EDZ. Furthermore, taking GCM into account, a computational algorithm for stability analysis of gate roadways was suggested. Validation was carried out through instrumentation and monitoring results of a longwall face at Parvade-2 coal mine in Tabas, Iran, demonstrating good agreement between the new model and measured results. Finally, a sensitivity analysis was carried out on the effect of pillar width, bearing capacity of support system and coal seam dip.  相似文献   
33.
Wind erosion is a serious problem throughout the world which results in soil and environment degradation and air pollution. The main objective of this study was to evaluate feasibility of microbial-induced carbonate precipitation, as a novel soil-strengthening technique, to reduce wind erosion risk of a sandy soil. For this purpose, the erosion of biocemented soil samples was investigated experimentally in a wind tunnel under the condition of wind velocity of 45 km h?1. The weight loss of treated samples relative to the weight loss of control treatment was 1.29 and 0.16 % for low and high bacterial mix concentrations, respectively, indicating a significant improvement in erosion control in biologically treated samples. The effect of biological treatment on wind erosion control was even superior at the higher velocities. Thereafter, the penetration resistance of the surface layers as a simple index of resistance against wind erosion was measured. Significant improvements in the penetration resistance of the treated soil samples were observed. Although low bacterial mix concentrations did not significantly improve the penetration resistance of the samples, significant improvements in the penetration resistance of the treated soil samples were observed reaching to the highest measured strength (56 kPa) in high bacterial mix concentrations samples. Finally, the morphology of precipitated CaCO3 crystals using scanning electron microscopy and X-ray powder diffraction analysis showed that the CaCO3 was mainly precipitated as vaterite crystals forming point-to-point contacts between the sand granules.  相似文献   
34.
Doklady Earth Sciences - The research work involves rock physics modeling and reservoir characterization of Suliman fold belt to sulamain fold depression. This area is a brighter zone for...  相似文献   
35.
A structural cross-section constructed across the Zagros Fold-Thrust Belt covering the Abadan Plain, Dezful Embayment, and Izeh Zone applied 2D and 3D seismic data, well data, surface and subsurface geological maps, satellite images and field reconnaissance. Besides validation and modification of the cross-section, restoration allows better understanding of the geology, structural style and stratigraphy of the Zagros basin. In the area of interest, the Hormuz basal decollement and the Gachsaran detachment play the most significant roles in the structural style and deformation of the Zagros belt. More complexity is associated with interval decollements such as Triassic evaporites, Albian shales and Eocene marls. A variety of lithotectonic units and detachment surfaces confound any estimation of shortening, which generally decreases with increasing depth. Deformation completely differs in the Abadan Plain, Dezful Embayment and Izeh Zone because of different sedimentation histories and tectonic evolution; gentle and young structures can be interpreted as pre-collisional structures of the Dezful Embayment before the Late Cretaceous. After the Late Cretaceous, the Mountain Front Fault is the main control of sedimentation and deformation in the Zagros Basin, and this completely characterizes fold style and geometry within the Dezful Embayment and the Izeh Zone.  相似文献   
36.
37.
In this paper we study the coexisting low frequency oscillations in strongly degenerate, magnetized, (electron-positron) pair and warm pair-ion plasma. The dispersion relations are obtained for both the cases in macroscopic quantum hydrodynamics approximation. In pair-ion case, the dispersion equation shows coupling of electrostatic and (shear) electromagnetic modes under certain circumstances with important role of ion temperature. Domain of existence of such waves and their relevance to dense degenerate astrophysical plasmas is pointed out. Results are analyzed numerically for typical systems with variation of ion concentration and ion temperature.  相似文献   
38.
Fault lineaments are the main input data in earthquake engineering and seismology studies. This study presents a digitally-based active fault map of the Kerman region in central-east Iran which experienced several devastating earthquakes on poorly exposed and/or not identified active faults. Using Landsat 8 data, we have carried out the image-based procedures of fault mapping, which include applying the contrast stretching technique, the principal component analysis, the color composite technique, the spectral rationing, and creating the false-color composite images. Besides, we have cross-checked the resulting map with the geological maps provided by the Geological Survey of Iran to decrease the associated uncertainties. The resulting map includes 123 fault segments, still, a part of which has been expressed in the previously compiled active-fault maps of Iran. Indeed, the new one is mapping the poorly exposed active faults, so-called secondary faults, which are able to produce strong events. These faults are primarily associated with poorly defined areas that accommodate low levels of seismicity; however, sporadic strong events are likely to occur. It has also been investigated that these kinds of faults are seismogenic and are able to produce destructive events. In total, the outcome of this study can also be jointed with seismic studies for investigating parts of the earthquake activity in central-east Iran, in particular for the fault-based approaches in impending earthquake-resistant buildings.  相似文献   
39.
Traditional approaches to develop 3D geological models employ a mix of quantitative and qualitative scientific techniques,which do not fully provide quantification of uncertainty in the constructed models and fail to optimally weight geological field observations against constraints from geophysical data.Here,using the Bayesian Obsidian software package,we develop a methodology to fuse lithostratigraphic field observations with aeromagnetic and gravity data to build a 3D model in a small(13.5 km×13.5 km)region of the Gascoyne Province,Western Australia.Our approach is validated by comparing 3D model results to independently-constrained geological maps and cross-sections produced by the Geological Survey of Western Australia.By fusing geological field data with aeromagnetic and gravity surveys,we show that 89%of the modelled region has>95%certainty for a particular geological unit for the given model and data.The boundaries between geological units are characterized by narrow regions with<95%certainty,which are typically 400-1000 m wide at the Earth's surface and 500-2000 m wide at depth.Beyond~4 km depth,the model requires geophysical survey data with longer wavelengths(e.g.,active seismic)to constrain the deeper subsurface.Although Obsidian was originally built for sedimentary basin problems,there is reasonable applicability to deformed terranes such as the Gascoyne Province.Ultimately,modification of the Bayesian engine to incorporate structural data will aid in developing more robust 3D models.Nevertheless,our results show that surface geological observations fused with geophysical survey data can yield reasonable 3D geological models with narrow uncertainty regions at the surface and shallow subsurface,which will be especially valuable for mineral exploration and the development of 3D geological models under cover.  相似文献   
40.
We investigate shear band initiation and propagation in fully saturated porous media by means of a combination of strong discontinuities (discontinuities in the displacement field) and XFEM. As a constitutive behavior of the solid phase, a Drucker–Prager model is used within a framework of non-associated plasticity to account for dilation of the sample. Strong discontinuities circumvent the difficulties which appear when trying to model shear band formation in the context of classical nonlinear continuum mechanics and when trying to resolve them with classical numerical methods like the finite element method. XFEM, on the other hand, is well suited to deal with problems where a discontinuity propagates, without the need of remeshing. The numerical results are confirmed by the application of Hill’s second-order work criterion which allows to evaluate the material point instability not only locally but also for the whole domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号