首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   32篇
  国内免费   4篇
测绘学   17篇
大气科学   16篇
地球物理   135篇
地质学   108篇
海洋学   34篇
天文学   55篇
综合类   2篇
自然地理   21篇
  2024年   1篇
  2021年   11篇
  2020年   9篇
  2019年   7篇
  2018年   16篇
  2017年   19篇
  2016年   30篇
  2015年   16篇
  2014年   19篇
  2013年   22篇
  2012年   26篇
  2011年   28篇
  2010年   24篇
  2009年   27篇
  2008年   17篇
  2007年   17篇
  2006年   11篇
  2005年   20篇
  2004年   14篇
  2003年   10篇
  2002年   8篇
  2001年   6篇
  2000年   9篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1991年   1篇
  1988年   2篇
  1983年   1篇
排序方式: 共有388条查询结果,搜索用时 15 毫秒
381.
We investigated, with a series of field and laboratory observations, the possible effect of the starfish Marthasteria glacialis predation on the operational sex ratio (OSR), i.e. the number of sexually mature males divided by the total number of sexually mature adults of both sexes at any one time, of the edible sea urchin Paracentrotus lividus . The OSR was estimated three times during the sea urchin summer spawning period (July 2004, June 2005 and July 2006) on barren substrates of Ustica Island Marine Protected Area (Southern Tyrrhenian Sea, Italy). Four sites were selected: two characterized by high M. glacialis density (take zone C) and two controls with low starfish density (no-take zone A). Mature sea urchins were independently collected by SCUBA diving and sexed. The adult sex ratio was skewed towards males at high M. glacialis density sites, whereas it was balanced (1:1) at predator low-density sites. Results of sex-selective feeding experiments in the laboratory showed that females of P. lividus were more vulnerable to M. glacialis predation. These outcomes underline the possible importance of M. glacialis in regulating the OSR of P. lividus populations.  相似文献   
382.
Clinoforms with a range of scales are essential elements of prograding continental margins. Different types of clinoforms develop during margin growth, depending on combined changes in relative sea level, sediment supply and oceanographic processes. In studies of continental margin stratigraphy, trajectories of clinoform ‘rollover’ points are often used as proxies for relative sea-level variation and as predictors of the character of deposits beyond the shelf-break. The analysis of clinoform dynamics and rollover trajectory often suffers from the low resolution of geophysical data, the small scale of outcrops with respect to the dimensions of clinoform packages and low chronostratigraphic resolution. Here, through high-resolution seismic reflection data and sediment cores, we show how compound clinoforms were the most common architectural style of margin progradation of the late Pleistocene lowstand in the Adriatic Sea. During compound clinoform development, the shoreline was located landward of the shelf-break. It comprised a wave-dominated delta to the west and a barrier and back-barrier depositional system in the central and eastern area. Storm-enhanced hyperpycnal flows were responsible for the deposition of a sandy lobe in the river mouth, whereas a heterolithic succession formed elsewhere on the shelf. The storm-enhanced hyperpycnal flows built an apron of sand on the slope that interrupted an otherwise homogeneous progradational mudbelt. Locally, the late lowstand compound clinoforms have a flat to falling shelf-break trajectory. However, the main phase of shelf-break bypass and basin deposition coincides with a younger steeply rising shelf-break trajectory. We interpret divergence from standard models, linking shelf-break trajectory to deep-sea sand deposition, as resulting from a great efficiency of oceanographic processes in reworking sediment in the shelf, and from a high sediment supply. The slope foresets had a large progradational attitude during the late lowstand sea-level rise, showing that oceanographic processes can inhibit coastal systems to reach the shelf-edge. In general, our study suggests that where the shoreline does not coincide with the shelf-break, trajectory analysis can lead to inaccurate reconstruction of the depositional history of a margin.  相似文献   
383.
A detailed characterization of the particle induced background is fundamental for many of the scientific objectives of the Athena X-ray telescope, thus an adequate knowledge of the background that will be encountered by Athena is desirable. Current X-ray telescopes have shown that the intensity of the particle induced background can be highly variable. Different regions of the magnetosphere can have very different environmental conditions, which can, in principle, differently affect the particle induced background detected by the instruments. We present results concerning the influence of the magnetospheric environment on the background detected by EPIC instrument onboard XMM-Newton through the estimate of the variation of the in-Field-of-View background excess along the XMM-Newton orbit. An important contribution to the XMM background, which may affect the Athena background as well, comes from soft proton flares. Along with the flaring component a low-intensity component is also present. We find that both show modest variations in the different magnetozones and that the soft proton component shows a strong trend with the distance from Earth.  相似文献   
384.
Previous comparison studies on seismic isolation have demonstrated its beneficial and detrimental effects on the structural performance of high‐speed rail bridges during earthquakes. Striking a balance between these 2 competing effects requires proper tuning of the controlling design parameters in the design of the seismic isolation system. This results in a challenging problem for practical design in performance‐based engineering, particularly when the uncertainty in seismic loading needs to be explicitly accounted for. This problem can be tackled using a novel probabilistic performance‐based optimum seismic design (PPBOSD) framework, which has been previously proposed as an extension of the performance‐based earthquake engineering methodology. For this purpose, a parametric probabilistic demand hazard analysis is performed over a grid in the seismic isolator parameter space, using high‐throughput cloud‐computing resources, for a California high‐speed rail (CHSR) prototype bridge. The derived probabilistic structural demand hazard results conditional on a seismic hazard level and unconditional, i.e., accounting for all seismic hazard levels, are used to define 2 families of risk features, respectively. Various risk features are explored as functions of the key isolator parameters and are used to construct probabilistic objective and constraint functions in defining well‐posed optimization problems. These optimization problems are solved using a grid‐based, brute‐force approach as an application of the PPBOSD framework, seeking optimum seismic isolator parameters for the CHSR prototype bridge. This research shows the promising use of seismic isolation for CHSR bridges, as well as the potential of the versatile PPBOSD framework in solving probabilistic performance‐based real‐world design problems.  相似文献   
385.
This paper investigates the seismic performance of a functional traction elevator as part of a full‐scale five‐story building shake table test program. The test building was subjected to a suite of earthquake input motions of increasing intensity, first while the building was isolated at its base and subsequently while it was fixed to the shake table platen. In addition, low‐amplitude white noise base excitation tests were conducted while the elevator system was placed in three different configurations, namely, by varying the vertical location of its cabin and counterweight, to study the acceleration amplifications of the elevator components due to dynamic excitations. During the earthquake tests, detailed observation of the physical damage and operability of the elevator as well as its measured response are reported. Although the cabin and counterweight sustained large accelerations because of impact during these tests, the use of well‐restrained guide shoes demonstrated its effectiveness in preventing the cabin and counterweight from derailment during high‐intensity earthquake shaking. However, differential displacements induced by the building imposed undesirable distortion of the elevator components and their surrounding support structure, which caused damage and inoperability of the elevator doors. It is recommended that these aspects be explicitly considered in elevator seismic design. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
386.
Self-potential is a passive geophysical method that can be applied in a straightforward manner with minimum requirements in the field. Nonetheless, interpretation of self-potential data is particularly challenging due to the inherited non-uniqueness present in all potential methods. Incorporating information regarding the target of interest can facilitate interpretation and increase the reliability of the final output. In the current paper, a novel method for detecting multiple sheet-like targets is presented. A numerical framework is initially described that simulates sheet-like bodies in an arbitrary 2D resistivity distribution. A scattered field formulation based on finite differences is employed that allows the edges of the sheet to be independent of the grid geometry. A novel analytical solution for two-layered models is derived and subsequently used to validate the accuracy of the proposed numerical scheme. Lastly, a hybrid optimization is proposed that couples linear least-squares with particle-swarm optimization in order to effectively locate the edges of multiple sheet-like bodies. Through numerical and real data, it is proven that the hybrid optimization overcomes local minimal that occurs in complex resistivity distributions and converges substantially faster compared to traditional particle-swarm optimization.  相似文献   
387.
This paper focuses on the development of a linear analytical model (even though servo‐hydraulic actuation systems are inherently non‐linear, especially for large amplitude simulations — near the performance capacity of the system — linearized models proved experimentally to be quite effective overall in capturing the salient features of shaking table dynamics) of a uni‐axial, servo‐hydraulic, stroke controlled shaking table system by using jointly structural dynamics and linear control theory. This model incorporates the proportional, integral, derivative, feed‐forward, and differential pressure gains of the control system. Furthermore, it accounts for the following physical characteristics of the system: time delay in the servovalve response, compressibility of the actuator fluid, oil leakage through the actuator seals and the dynamic properties of both the actuator reaction mass and test structure or payload. The proposed model, in the form of the total shaking table transfer function (i.e. between commanded and actual table motions), is developed to account for the specific characteristics of the Rice University shaking table. An in‐depth sensitivity study is then performed to determine the effects of the table control parameters, payload characteristics, and servovalve time delay upon the total shaking table transfer function. The sensitivity results reveal: (a) a potential strong dynamic interaction between the oil column in the actuator and the payload, and (b) the very important effect of the servovalve time delay upon the total shaking table transfer function. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
388.
Dense gas-particle jets similar to collapsing eruption columns were generated by large-scale experiments. The column collapse resulted in a ground-hugging current forming stratified layers with bedding similar to natural pyroclastic density current deposits. At the impact of the collapsing column on the ground, a thick, massive bed was formed due to a high sedimentation rate that dumped turbulence due to high clast concentration. Down-current, flow expansion favoured turbulence and dilute gas-particle current that formed thin rippled layers deposited under traction. Experiments fed with fine ash (median size 0·066 mm) formed deposits without tractional structures, because fine particles, as other sedimentary fine material, is cohesive and exposes a limited surface to the shear stress. Experimental outcomes show that massive beds are formed where the sedimentation rate per unit width Srw exceeds the bedload transportation rate Qb by two orders of magnitude. A lower ratio generates traction at the base of the flow and formation of shear structures that increase in wavelength and height with a decreasing flux. This study presents a diagram that provides a useful addition for facies analysis of pyroclastic density currents, provided that deposits representing sustained sedimentation can be identified in the field. In the diagram a decrease in the Srw/Qb ratio corresponds to an increase in bedform size. Application of the diagram for hazard assessment purposes allows the reconstruction of the mass eruption rate of the Agnano–Monte Spina eruption at Campi Flegrei, which is the main variable defining the intensity of past eruptions, and of the Bingham rheology of the massive underflow of the Mercato pyroclastic density current at Vesuvius.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号