首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   450篇
  免费   12篇
测绘学   12篇
大气科学   33篇
地球物理   104篇
地质学   188篇
海洋学   22篇
天文学   75篇
自然地理   28篇
  2023年   2篇
  2021年   7篇
  2020年   11篇
  2019年   10篇
  2018年   13篇
  2017年   14篇
  2016年   16篇
  2015年   24篇
  2014年   19篇
  2013年   26篇
  2012年   19篇
  2011年   34篇
  2010年   37篇
  2009年   26篇
  2008年   24篇
  2007年   12篇
  2006年   28篇
  2005年   13篇
  2004年   23篇
  2003年   7篇
  2002年   15篇
  2001年   12篇
  2000年   10篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   6篇
  1995年   1篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   3篇
  1963年   1篇
排序方式: 共有462条查询结果,搜索用时 17 毫秒
1.
Reconstructions of ancient delta systems rely typically on a two-dimensional (2D) view of prograding clinothems but may miss their three-dimensional (3D) stratigraphic complexity which can, instead, be best documented on modern delta systems by integrating high-resolution geophysical data, historical cartography, core data and geomorphological reconstructions offshore. We quantitatively compare three precisely positioned, high-resolution multi-beam bathymetry maps in the delta front and pro delta sectors (0.3 to 10 m water depth) of Po di Pila, the most active of the modern Po Delta five branches. By investigating the detailed morphology of the prograding modern Po Delta, we shed new light on the mechanisms that control the topset to foreset transition in clinothems and show the temporal and spatial complexity of a delta and its pro delta slope, under the impact of oceanographic processes. This study documents the ephemeral nature of the rollover point at the transition between sandy topset (fluvial, delta plain to mouth-bar) and muddy seaward-dipping foreset deposits advancing, in this case, in >20 m of water depth. Three multibeam surveys, acquired between 2013 and 2016, document the complexity in space and time of the topset and foreset regions and their related morphology, a diagnostic feature that could not be appreciated using solely 2D, even very high-resolution, seismic profiles. In addition, the comparison of bathymetric surveys gathered with one-year lapses shows the migration of subaqueous sand dunes on the clinothem topset, the formation of ephemeral cut-and-fill features at the rollover point (few m below mean sea level), the presence of collapse depressions derived by sagging of sediments and fluid expulsion (possibly induced by storm waves) on the foreset, and splays of sand likely reflecting gravity flows on the lower foreset. Though the modern Po Delta is anthropogenic in many respects, its subaqueous clinothem can be studied as a scale model for ancient clinothems that are less resolved geometrically and far less constrained chronologically.  相似文献   
2.
di Prisco  Claudio  Flessati  Luca  Porta  Davide 《Acta Geotechnica》2020,15(4):1013-1030

The fronts of tunnels excavated under particularly difficult ground conditions by employing conventional tunnelling methods are commonly supported: the stabilization is usually achieved either by improving the mechanical properties of the soil (injections, jet grouting, soil freezing, etc.) or by introducing linear inclusions. This last technique, consisting in the introduction of pipes (usually made of fibreglass reinforced polymers) in the front, is particularly popular since it is very simple to adapt the reinforcement geometry, length and number to the different conditions encountered during the excavation. The design of this reinforcement technique is nowadays based on very simplified approaches: on either empirical formula or the limit equilibrium method. In a previous paper, the authors numerically studied the mechanical response of unreinforced fronts in cohesive soils and defined a non-dimensional front characteristic curve. In this paper, the authors intend to take into consideration the role of reinforcements by following the same approach. A procedure allowing the definition of the reinforced non-dimensional front characteristic curve, once the reinforcement pattern is assigned, is introduced. The practical use of this curve is described.

  相似文献   
3.
Integrating analysis of the benthic palaeoecological record with multivariate ordination techniques represents a powerful synergy able to provide an improved characterization of coastal depositional facies in a sequence stratigraphical perspective. Through quantitative analysis of benthic foraminifer, ostracod and mollusc associations from the postglacial succession of Core M3 (Arno coastal plain, Tuscany, Italy), and application of detrended correspondence analysis (DCA) to the mollusc sub‐data set, we offer a refined picture of stratigraphical variations in faunal content from a paralic depositional setting, and reconstruct the palaeoenvironmental gradients that account for such variations. Despite distinct ecological behaviours, and taphonomic and sedimentological constraints, a strong ecological control on meio‐ and macrofaunal biofacies and taxa turnover is documented across the study succession. Amongst all possible mechanisms that may play a role in ‘shaping’ fossil distribution, the ecological signal driven by salinity represents the most prominent factor controlling the composition of fossil associations in the cored succession. Molluscs can even provide outstanding quantitative estimates of palaeosalinity along the sampled core. When plotted stratigraphically, the three fossil sub‐data sets show consistent patterns of vertical evolution that enable prompt identification of the key surfaces for sequence stratigraphical interpretation in otherwise lithologically indistinguishable deposits. The concomitant maximum richness of species with strong marine affinity, paralleled by the highest DCA salinity estimates, allows recognition of the maximum flooding zone, dated to 7.7 cal. ka BP, within a homogeneous succession of outer lagoon clays. These clays are sandwiched between early transgressive, swamp to inner lagoon deposits and overlying prograding coastal?alluvial plain facies.  相似文献   
4.
Despite increased application of subsurface datasets below the limits of seismic resolution, reconstructing near‐surface deformation of shallow key stratigraphic markers beneath modern alluvial and coastal plains through sediment core analysis has received little attention. Highly resolved stratigraphy of Upper Pleistocene to Holocene (Marine Isotope Stage 5e to Marine Isotope Stage 1) alluvial, deltaic and coastal depositional systems across the southern Po Plain, down to 150 m depth, provides an unambiguous documentation on the deformation of previously flat‐lying strata that goes back in time beyond the limits of morphological, historical and palaeoseismic records. Five prominent key horizons, accurately selected on the basis of their sedimentological characteristics and typified for their fossil content, were used as highly effective stratigraphic markers (M1 to M5) that can be tracked for tens of kilometres across the basin. A facies‐controlled approach tied to a robust chronology (102 radiocarbon dates) reveals considerable deformation of laterally extensive nearshore (M1), continental (M2 and M3) and lagoon (M4 and M5) marker beds originally deposited in a horizontal position (M1, M4 and M5). The areas where antiformal geometries are best observed are remarkably coincident with the axes of buried ramp anticlines, across which new seismic images reveal substantially warped stratal geometries of Lower Pleistocene strata. The striking spatial coincidence of fold crests with the epicentres of historic and instrumental seismicity suggests that deformation of marker beds M1 to M5 might reflect, in part at least, syntectonically generated relief and, thus, active tectonism. Precise identification and lateral tracing of chronologically constrained stratigraphic markers in the 14C time window through combined sedimentological and palaeoecological data may delineate late Quaternary subsurface stratigraphic architecture at an unprecedented level of detail, outlining cryptic stratal geometries at the sub‐seismic scale. This approach is highly reproducible in tectonically active Quaternary depositional systems and can help to assess patterns of active deformation in the subsurface of modern alluvial and coastal plains worldwide.  相似文献   
5.
Rock avalanches are complex phenomena that occur with a low frequency but which have a high destructive potential. As a consequence, the people who are responsible for the management of a territory are more and more interested in predicting the possible evolutions of well-known potential events. Tackling the above problems from a quantitative point of view, the RASH3D code, based on continuum mechanics concepts, has been here used to predict the evolution of a potential rock avalanche in the Western Italian Alps. A calibration-based approach, in which rheological parameters are constrained by systematic adjustment during trial-and-error back-analysis of past events similar to the landslide under investigation, is proposed to set rheological parameter values to be used for prediction purposes. The back-analysis of a 2?106 m3 rock avalanche located in the Divedro Valley, close to the area of the potential event, has then been analysed using both a frictional and a Voellmy rheology. The characteristics of the slope and the dynamics of the event have made the frictional rheology more suitable to come to the correct simulation of the historical case. The back-analysis results have contributed not only in the selection of the rheological parameter values but also in the choice of the type of rheological law to use in the carried out forward-analyses.  相似文献   
6.
The central-western Mediterranean area is a key region for understanding the complex interaction between igneous activity and tectonics. In this review, the specific geochemical character of several ‘subduction-related’ Cenozoic igneous provinces are described with a view to identifying the processes responsible for the modifications of their sources. Different petrogenetic models are reviewed in the light of competing geological and geodynamic scenarios proposed in the literature.Plutonic rocks occur almost exclusively in the Eocene–Oligocene Periadriatic Province of the Alps while relatively minor plutonic bodies (mostly Miocene in age) crop out in N Morocco, S Spain and N Algeria. Igneous activity is otherwise confined to lava flows and dykes accompanied by relatively greater volumes of pyroclastic (often ignimbritic) products. Overall, the igneous activity spanned a wide temporal range, from middle Eocene (such as the Periadriatic Province) to the present (as in the Neapolitan of southern Italy). The magmatic products are mostly SiO2-oversaturated, showing calcalkaline to high-K calcalcaline affinity, except in some areas (as in peninsular Italy) where potassic to ultrapotassic compositions prevail. The ultrapotassic magmas (which include leucitites to leucite-phonolites) are dominantly SiO2-undersaturated, although rare, SiO2-saturated (i.e., leucite-free lamproites) appear over much of this region, examples being in the Betics (southeast Spain), the northwest Alps, northeast Corsica (France), Tuscany (northwest Italy), southeast Tyrrhenian Sea (Cornacya Seamount) and possibly in the Tell region (northeast Algeria).Excepted for the Alpine case, subduction-related igneous activity is strictly linked to the formation of the Mediterranean Sea. This Sea, at least in its central and western sectors, is made up of several young (< 30 Ma) V-shaped back-arc basins plus several dispersed continental fragments, originally in crustal continuity with the European plate (Sardinia, Corsica, Balearic Islands, Kabylies, Calabria, Peloritani Mountains). The bulk of igneous activity in the central-western Mediterranean is believed to have tapped mantle ‘wedge’ regions, metasomatized by pressure-related dehydration of the subducting slabs. The presence of subduction-related igneous rocks with a wide range of chemical composition has been related to the interplay of several factors among which the pre-metasomatic composition of the mantle wedges (i.e., fertile vs. refractory mineralogy), the composition of the subducting plate (i.e., the type and amount of sediment cover and the alteration state of the crust), the variable thermo-baric conditions of magma formation, coupled with variable molar concentrations of CO2 and H2O in the fluid phase released by the subducting plates are the most important.Compared to classic collisional settings (e.g., Himalayas), the central-western Mediterranean area shows a range of unusual geological and magmatological features. These include: a) the rapid formation of extensional basins in an overall compressional setting related to Africa-Europe convergence; b) centrifugal wave of both compressive and extensional tectonics starting from a ‘pivotal’ region around the Gulf of Lyon; c) the development of concomitant Cenozoic subduction zones with different subduction and tectonic transport directions; d) subduction ‘inversion’ events (e.g., currently along the Maghrebian coast and in northern Sicily, previously at the southern paleo-European margin); e) a repeated temporal pattern whereby subduction-related magmatic activity gives way to magmas of intraplate geochemical type; f) the late-stage appearance of magmas with collision-related ‘exotic’ (potassic to ultrapotassic) compositions, generally absent from simple subduction settings; g) the relative scarcity of typical calcalkaline magmas along the Italian peninsula; h) the absence of igneous activity where it might well be expected (e.g., above the hanging-wall of the Late Cretaceous–Eocene Adria–Europe subduction system in the Alps); i) voluminous production of subduction-related magmas coeval with extensional tectonic régimes (e.g., during Oligo-Miocene Sardinian Trough formation).To summarize, these salient central-western Mediterranean features, characterizing a late-stage of the classic ‘Wilson Cycle’ offer a ‘template’ for interpreting magmatic compositions in analogous settings elsewhere.  相似文献   
7.
8.
9.
The Italian “Guidelines for the seismic risk classification of constructions” approved in February 2017 define the technical principles for exploiting tax deductions with respect to seismic strengthening interventions on existing buildings (Sismabonus). Tax deductions represent a unique opportunity to improve the seismic safety of the existing Italian building stock. The guidelines are very simple and allow practitioners to deal with the sophisticated concepts behind modern seismic design, such as expected annual losses (EAL) and repair costs (expressed as a fraction of the Reconstruction Cost: %RC). The seismic risk classes of buildings and the class upgrade due to strengthening interventions can be assessed using the principles included in the guidelines. The seismic risk class is the minimum between the class defined by the building safety index at the ultimate limit state and the one related to the EAL. The latter class depends on the area under the curve of the expected losses, which is easily obtained by computing the safety index converted in the return period (annual frequency) at different limit states and the relevant %RC. This paper illustrates the technical principles at the base of the guidelines and the procedure used to calibrate the repair costs associated with the different limit states using the actual repair costs monitored in the reconstruction process following recent Italian earthquakes. Finally, simple tools to estimate the cost of the strengthening interventions to improve the seismic capacity at the life-safety limit states are provided.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号