首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   15篇
  国内免费   7篇
测绘学   5篇
大气科学   19篇
地球物理   43篇
地质学   140篇
海洋学   12篇
天文学   19篇
综合类   2篇
自然地理   9篇
  2023年   4篇
  2022年   7篇
  2021年   5篇
  2020年   6篇
  2019年   6篇
  2018年   22篇
  2017年   15篇
  2016年   15篇
  2015年   11篇
  2014年   13篇
  2013年   19篇
  2012年   15篇
  2011年   13篇
  2010年   12篇
  2009年   15篇
  2008年   5篇
  2007年   7篇
  2006年   6篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1970年   2篇
  1969年   1篇
  1965年   2篇
排序方式: 共有249条查询结果,搜索用时 203 毫秒
81.
广东清远早、晚稻稻田甲烷排放的观测研究   总被引:1,自引:0,他引:1  
分析了2003、2004年广东省清远市郊区早、晚稻稻田甲烷(CH4)的排放通量,结果表明:广东清远早、晚稻稻田CH4排放通量的几何平均值2003年为4,38mg·m^-2·h^-1和6.09mg·m^-2·h^-1;2004年为5.17mg·m^-2·h^-1和8.3mg·m^-2·h^-1,土壤有机质含量是造成2003和2004年CH4排放差异的原因之一。水稻品种的不同,CH4排放通量也有所不同,实验表明,水稻品种“七丝尖”的排放通量比品种“金优99”高1.08mg·m^-2·h^-1,产量却只有64%。此外,与相关的测量结果进行初步比较。  相似文献   
82.
The best known cause for colors in insulating minerals is due to transition metal ions as impurities. As an example, Cr3+ is responsible for the red color of ruby (α-Al2O3:Cr3+) and the green color of eskolaite (α-Cr2O3). Using X-ray absorption measurements, we connect the colors of the Cr x Al2−x O3 series with the structural and electronic local environment around Cr. UV–VIS electronic parameters, such as the crystal field and the Racah parameter B, are related to those deduced from the analysis of the isotropic and XMCD spectra at the Cr L2,3-edges in Cr0.07Al1.93O3 and eskolaite. The Cr–O bond lengths are extracted by EXAFS at the Cr K-edge in the whole Cr x Al2−x O3 (0.07≤x< 2) solid solution series. The variation of the mean Cr–O distance between Cr0.07Al1.93O3 and α-Cr2O3 is evaluated to be 0.015 Å (≈1%). The variation of the crystal field in the Cr x Al2−x O3 series is discussed in relation with the variation of the averaged Cr–O distances.  相似文献   
83.
Abstract

The groundwater levels can have a significant impact on structures and infrastructures of coastal areas. The simulation of the hydraulic behavior of coastal aquifers is very important due to its specific boundary conditions. In this study, the groundwater level in the Bandar-e-Gaz coastal aquifer in the Gorgan Gulf region located in northern Iran is simulated using the MODFLOW mathematical model. The modeling of the coastal aquifer behavior carried out in two calibrations (steady and unsteady states). The validation periods (unsteady state), the mean absolute error (MAE) and mean bias error (MBE) were used to evaluate the results. The values of MAE and MBE criteria for the steady state were 0.31 (m) and –0.08 (m), while the average of these criteria in the unsteady state in calibration period were 0.46 and –0.39, and in the validation period were 0.42 (m) and –0.31 (m), respectively. The mentioned results confirm the precision of the model for the entire simulation period, they also indicate that the simulation has a limited underestimation behavior. Moreover, it shows that the precision of the results has a negligible variability, which means the simulation also has considerable reliability. The highest and lowest amount of error in the winter and summer seasons are in accordance with the lowest and highest seawater levels, and it shows the significant sea effect on the hydraulic behavior of the coastal aquifer.  相似文献   
84.
Estimation of hydraulic conductivity from surface resistivity measurements is one of the most difficult and challenging hydrogeophysical targets. The promising side of this relation is the analogy between electric current flow and water flow, whereas the grand ambiguity is the non-dimensionality between both two quantities. Imaginary surface conductivity component is used recently to deduce the hydraulic conductivity via complex resistivity measurements. Since there are similar properties between imaginary (out-of-phase) and real (in-phase) surface conductivity components, the latter is used in this paper to predict the hydraulic conductivity. Two mathematical parameters were determined to express the electrical equivalent of hydraulic conductivity in sand and clay systems based on the mode of electrical double-layer formation in both systems. The reliability of the proposed method is tested through applying on two datasets representing sand and clay systems. The first dataset is a clean sand and gravel aquifer in the Keritis basin in Chania, Crete, Greece. The second is mostly clayey sand aquifer in Wadi El-Assuity, Egypt. Application of the present approach in these two cases resulted in promising nearly identical values with the measured hydraulic conductivity via pumping test or geometric hydraulic conductivity via grain size analysis.  相似文献   
85.
86.
Afroosa  M.  Rohith  B.  Paul  Arya  Durand  Fabien  Bourdallé-Badie  Romain  Joseph  Sudheer  Prerna  S.  Shenoi  S. S. C. 《Ocean Dynamics》2022,72(7):523-538
Ocean Dynamics - An intraseasonal see-saw has been observed in the Indo-Pacific barotropic sea level anomaly during boreal winters. This see-saw carries a significant amount of energy and is...  相似文献   
87.
The detailed hydro-chemical study of meltwater draining from Khangri glacier Arunachal Pradesh has been carried out to evaluate the major ion chemistry and weathering processes in the drainage basin. The investigative results shows that the meltwater is almost neutral to slightly acidic in nature with Mg–HCO3-dominated hydro-chemical facies. In glacial meltwater, Ca+?2 is the most dominated cation followed by Mg+2, Na+, and K+, while HCO3? is the most dominant anion followed by SO42?, NO3?, and Cl?. The dominant cations such as Ca+2 and Mg+2 show a good relation with the minerals abundance of the rocks. Calcite (CaCO3) and biotite [K(Mg,Fe)3AlSi3O10(F,OH)2] are the most abundant minerals in the deformed carbonate-rich metasedimentary rocks near to the snout with some K feldspar (KAlSi3O8) and quartz (SiO2). This suggests Ca+2 have definitely entered into the water due to the dissolution of calcite and Ca feldspar (CaAl2Si2O8), while one of the source of Mg+2 is biotite. Na feldspar (NaAlSi3O8) has contributed towards the availability of sodium ion, while potassium ion is derived from the chemical weathering of K feldspar and biotite. The chemical weathering is the foremost mechanism controlling the hydro-chemistry of the Khangri glacier because of the least anthropogenic interferences. The mineralogy of surrounding rocks is studied to understand better, the rock–water interaction processes, and their contribution towards ionic concentration of meltwater. The meltwater discharge and individual ion flux of the catchment area have also been calculated, to determine the ionic denudation rate for the ablation season. The high elemental ratio of (Ca?+?Mg)/(Na?+?K) (7.91?±?0.39 mg/l) and low elemental ratio of (Na?+?K)/total cations (0.11?±?0.004) indicate that the chemical composition of meltwater is mainly controlled by carbonate weathering and moderately by silicate weathering. The scatter plot result between (Ca?+?Mg) and total cations confirms that carbonate weathering is a major source of dissolved ions in Khangri glacier meltwater. In addition, the statistical analysis was also used to determine the correlation between physical parameters of glacier meltwater which controlled the solute dynamics.  相似文献   
88.
Digital soil mapping relies on field observations, laboratory measurements and remote sensing data, integrated with quantitative methods to map spatial patterns of soil properties. The study was undertaken in a hilly watershed in the Indian Himalayan region of Mandi district, Himachal Pradesh for mapping soil nutrients by employing artificial neural network (ANN), a potent data mining technique. Soil samples collected from the surface layer (0–15 cm) of 75 locations in the watershed, through grid sampling approach during the fallow period of November 2015, were preprocessed and analysed for various soil nutrients like soil organic carbon (SOC), nitrogen (N) and phosphorus (P). Spectral indices like Colouration Index, Brightness Index, Hue Index and Redness Index derived from Landsat 8 satellite data and terrain parameters such as Terrain Wetness Index, Stream Power Index and slope using CartoDEM (30 m) were used. Spectral and terrain indices sensitive to different nutrients were identified using correlation analysis and thereafter used for predictive modelling of nutrients using ANN technique by employing feed-forward neural network with backpropagation network architecture and Levenberg–Marquardt training algorithm. The prediction of SOC was obtained with an R2 of 0.83 and mean squared error (MSE) of 0.05, whereas for available nitrogen, it was achieved with an R2 value of 0.62 and MSE of 0.0006. The prediction accuracy for phosphorus was low, since the phosphorus content in the area was far below the normal P values of typical Indian soils and thus the R2 value observed was only 0.511. The attempts to develop prediction models for available potassium (K) and clay (%) failed to give satisfactory results. The developed models were validated using independent data sets and used for mapping the spatial distribution of SOC and N in the watershed.  相似文献   
89.
This study investigated the leaching of radium-226 from phosphogypsum (PG) waste produced from the fertilizer industry by synthetic solutions that replicate water that may contact the waste in natural conditions. The results indicated that the activity concentration of Ra-226 in the PG was 461 ± 12 Bq kg?1 and compared with other studies carried out worldwide. The leached percentage of Ra-226 represents the exchangeable fraction loosely bounded in the matrix of the PG waste. The leached fraction of Ra-226 was 6.5 ± 0.6 and 9.0 ± 0.5% when the waste was exposed to rainwater and saline solution, respectively. It is also found that the leaching fraction increased 10–12 ± 0.4% when the waste was exposed to the admixture of saline solution containing Sr2+ or Ba2+ cations, whereas it was lowered to 4–5 ± 0.5% in the presence of carbonate or sulfate anions. When the PG is used as an economic fertilizer, the irrigation water can leach 7.8 ± 0.6% of Ra-226 that could contribute to plant uptake, thereby to animal and/or human consumption. The primary tests of the drinking water (well and tap resources) consumed by the populations surround the PG facility showed that the activity concentration of Ra-226 was below the minimum detectable activity.  相似文献   
90.
The Middle East and North Africa (MENA) region is the world’s most water-stressed region, with its countries constituting 12 of the 15 most water-stressed countries globally. Because of data paucity, comprehensive regional-scale assessments of groundwater resources in the MENA region have been lacking. The presented study addresses this issue by using a distributed ArcGIS model, parametrized with gridded data sets, to estimate groundwater storage reserves in the region based on generated aquifer saturated thickness and effective porosity estimates. Furthermore, monthly gravimetric datasets (GRACE) and land surface parameters (GLDAS) were used to quantify changes in groundwater storage between 2003 and 2014. Total groundwater reserves in the region were estimated at 1.28 × 106 cubic kilometers (km3) with an uncertainty range between 816,000 and 1.93 × 106 km3. Most of the reserves are located within large sedimentary basins in North Africa and the Arabian Peninsula, with Algeria, Libya, Egypt, and Saudi Arabia accounting for approximately 75% of the region’s total freshwater reserves. Alternatively, small groundwater reserves were found in fractured Precambrian basement exposures. As for groundwater changes between 2003 and 2014, all MENA countries except for Morocco exhibited declines in groundwater storage. However, given the region’s large groundwater reserves, groundwater changes between 2003 and 2014 are minimal and represent no immediate short-term threat to the MENA region, with some exceptions. Notwithstanding this, the study recommends the development of sustainable and efficient groundwater management policies to optimally utilize the region’s groundwater resources, especially in the face of climate change, demographic expansion, and socio-economic development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号