首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
大气科学   2篇
地球物理   10篇
地质学   1篇
天文学   2篇
自然地理   4篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2006年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
11.
12.
The development of alternate bars in channelized rivers can be explained theoretically as an instability of the riverbed when the active channel width to depth ratio exceeds a threshold. However, the development of a vegetation cover on the alternate bars of some channelized rivers and its interactions with bar morphology have not been investigated in detail. Our study focused on the co‐evolution of alternate bars and vegetation along a 33 km reach of the Isère River, France. We analysed historical information to investigate the development of alternate bars and their colonization by vegetation within a straightened, embanked river subject to flow regulation, sediment mining, and vegetation management. Over an 80 year period, bar density decreased, bar length increased, and bar mobility slowed. Vegetation encroachment across bar surfaces accompanied these temporal changes and, once established, vegetation cover persisted, shifting the overall system from an unvegetated to a vegetated dynamic equilibrium state. The unvegetated morphodynamics of the impressively regular sequence of alternate bars that developed in the Isère following channelization is consistent with previous theoretical morphodynamic work. However, the apparent triggering dynamics of vegetation colonization needs to be investigated, based on complex biophysical instability processes. If instability related to vegetation colonization is confirmed, further work needs to focus on the relevance of initial conditions for this instability, and on related feedback effects such as how the morphodynamics of bare‐sediment alternate bars may have affected vegetation development and, in turn, how vegetation has created a new dynamic equilibrium state. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
13.
In December 1985, an automated meteorological station was established at Lake Hoare in the dry valley region of Antarctica. Here, we report on the first year-round observations available for any site in Taylor Valley. This dataset augments the year-round data obtained at Lake Vanda (Wright Valley) by winter-over crews during the late 1960s and early 1970s. The mean annual solar flux at Lake Hoare was 92 W m-2 during 1986, the mean air temperature -17.3 degrees C, and the mean 3-m wind speed 3.3 m s-1. The local climate is controlled by the wind regime during the 4-month sunless winter and by seasonal and diurnal variations in the incident solar flux during the remainder of the year. Temperature increases of 20 degrees-30 degrees C are frequently observed during the winter due to strong f?hn winds descending from the Polar Plateau. A model incorporating nonsteady molecular diffusion into Kolmogorov-scale eddies in the interfacial layer and similarity-theory flux-profiles in the surface sublayer, is used to determine the rate of ice sublimation from the acquired meteorological data. Despite the frequent occurrence of strong winter f?hns, the bulk of the annual ablation occurs during the summer due to elevated temperatures and persistent moderate winds. The annual ablation from Lake Hoare is estimated to have been 35.0 +/- 6.3 cm for 1986.  相似文献   
14.
One of the most consistent and often dramatic interactions between the high latitude ionosphere and the thermosphere occurs in the vicinity of the auroral oval in the afternoon and evening period. Ionospheric ions, convected sunward by the influence of the magnetospheric electric field, create a sunward jet-stream in the thermosphere, where wind speeds of up to 1 km s?1 can occur. This jet-stream is nearly always present in the middle and upper thermosphere (above 200 km altitude), even during periods of very low geomagnetic activity. However, the magnitude of the winds in the jet-stream, as well as its location and range in latitude, each depend on geomagnetic activity. On two occasions, jet-streams of extreme magnitude have been studied using simultaneous ground-based and satellite observations, probing both the latitudinal structure and the local time dependence. The observations have then been evaluated with the aid of simulations using a global, three-dimensional, time-dependent model of thermospheric dynamics including the effects of magnetospheric convection and particle precipitation. The extreme events, where sunward winds of above 800 ms?1 are generated at relatively low geomagnetic latitudes (60–70°) require a greatly expanded auroral oval and large cross-polar cap electric field ( ~ 150 kV). These in turn are generated by a persistent strong Interplanetary Magnetic Field, with a large southward component. Global indices such as Kp are a relatively poor indicator of the magnitude and extent of the jet-stream winds.  相似文献   
15.
Human‐accelerated climate change is quickly leading to glacier‐free mountains, with consequences for the ecology and hydrology of alpine river systems. Water origin (i.e., glacier, snowmelt, precipitation, and groundwater) is a key control on multiple facets of alpine stream ecosystems, because it drives the physico‐chemical template of the habitat in which ecological communities reside and interact and ecosystem processes occur. Accordingly, distinct alpine stream types and associated communities have been identified. However, unlike streams fed by glaciers (i.e., kryal), groundwater (i.e., krenal), and snowmelt/precipitation (i.e., rhithral), those fed by rock glaciers are still poorly documented. We characterized the physical and chemical features of these streams and investigated the influence of rock glaciers on the habitat template of alpine river networks. We analysed two subcatchments in a deglaciating area of the Central European Alps, where rock glacier‐fed, groundwater‐fed, and glacier‐fed streams are all present. We monitored the spatial, seasonal, and diel variability of physical conditions (i.e., water temperature, turbidity, channel stability, and discharge) and chemical variables (electrical conductivity, major ions, and trace element concentrations) during the snowmelt, glacier ablation, and flow recession periods of two consecutive years. We observed distinct physical and chemical conditions and seasonal responses for the different stream types. Rock glacial streams were characterized by very low and constant water temperatures, stable channels, clear waters, and high concentrations of ions and trace elements that increased as summer progressed. Furthermore, one rock glacier strongly influenced the habitat template of downstream waters due to high solute export, especially in late summer under increased permafrost thaw. Given their unique set of environmental conditions, we suggest that streams fed by thawing rock glaciers are distinct river habitats that differ from those normally classified for alpine streams. Rock glaciers may become increasingly important in shaping the hydroecology of alpine river systems under continued deglaciation.  相似文献   
16.
17.
Visible to infrared reflectance spectroscopic analyses (0.3-25 micromoles) have been performed on sediments from the Dry Valleys region of Antarctica. Sample characterization for these sediments includes extensive geochemical analyses and X-ray diffraction (XRD). The reflectance spectra and XRD indicate major amounts of quartz, feldspar, and pyroxene in these samples and lesser amounts of carbonate, mica, chlorite, amphibole, illite, smectite, and organic matter. Calcite is the primary form of carbonate present in these Lake Hoare sediments based on the elemental abundances and spectroscopic features. The particle size distribution of the major and secondary components influences their detection in mixtures and this sensitivity to particle size is manifested differently in the "volume scattering" and "surface scattering" infrared regions. The Christiansen feature lies between these two spectral regimes and is influenced by the spectral properties of both regions. For these mixtures the Christiansen feature was found to be dependent on physical parameters, such as particle size and sample texture, as well as the mineralogy. Semiquantitative spectroscopic detection of calcite and organic material has been tested in these quartz- and feldspar-rich sediments. The relative spectral band depths due to organics and calcite correlate in general with the wt% C from organic matter and carbonate. The amounts of organic matter and carbonate present correlate with high Br and U abundances and high Ca and Sr abundances, respectively. Variation in the elemental abundances was overall minimal, which is consistent with a common sedimentary origin for the forty-two samples studied here from Lake Hoare.  相似文献   
18.
Measurements of dissolved N2, O2, Ar, CO2, and CH4 were made in perennially ice-covered Lake Hoare. Results confirm previous reports that O2 concentrations in the upper water column exceed atmospheric equilibrium and that N2 and Ar are supersaturated throughout the water column. The mean supersaturation of N2 was found to be 2.0 (+/- 0.37) and Ar was 3.8 (+/- 1.1). The ratios of N2/Ar (20.3 +/- 13.8), and O2/Ar (22.5 +/- 4.0) at the ice-water interface are consistent with those previously measured, suggesting that bubble formation is the main process for removing gas from the lake. However, the saturations of N2 and Ar greatly exceed those previously predicted for degassing by bubble formation only at the ice-water interface. The data support the hypothesis that removal of gas by bubbles occurs in the water column to a depth of 11 m in Lake Hoare. CO2 concentration increases from near zero at the ice-water interface to 80-100 times saturation at and below the chemocline at c. 28 m. There is considerable variability in the gas concentrations throughout the water column; samples separated in depth by one metre may vary by more than 50% in gas content. It is likely that this phenomenon results from the lack of turbulent mixing in the water column. Methane (c. 2 micrograms l-1) was detected below the chemocline and immediately above the sediment/water interface at a depth of 30 m. Samples from lakes Vanda, Joyce, and Miers, also show supersaturations of O2, N2, and Ar at levels similar to levels found in Lake Hoare.  相似文献   
19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号