首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   7篇
测绘学   1篇
大气科学   5篇
地球物理   48篇
地质学   52篇
海洋学   2篇
天文学   4篇
综合类   1篇
自然地理   5篇
  2024年   1篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   11篇
  2017年   11篇
  2016年   8篇
  2015年   2篇
  2014年   8篇
  2013年   10篇
  2012年   8篇
  2011年   8篇
  2010年   6篇
  2009年   4篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2003年   1篇
  2001年   1篇
  1994年   1篇
  1992年   1篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有118条查询结果,搜索用时 437 毫秒
71.
Nowadays, climate change and global warming have led to changes in the distribution of precipitation, which affect on the availability of water resources. Therefore, investigating the temporal and spatial variations of precipitation in the previous period is highly important in the future planning for flood control and local management of water resources. Considering the importance of this issue, in the present study, the precipitation concentration indices have been used for analysing precipitation changes at daily, seasonal, and annual time scales in the period of 1971 to 2011 over the Jharkhand state, India. Also, Modified Mann–Kendall test has used to study the trend of precipitation concentration indices in annual and seasonal time scales. The result shows a highly irregular and non-uniform distribution in the annual scale. For the seasonal scale an irregular and non-uniform distribution has been also observed, although the summer had a better situation than other seasons. For daily scale, none of the stations had a regular concentration and in the northeast and southern parts of the study area, there have been more irregularities. Furthermore, the results of investigating annual precipitation trend showed a combination of increasing and decreasing trend over the study area. The results of this study can be applied to manage water supplies, drainage projects, construct collection structures of urban flood, develop plans to prevent soil erosion, and designing appropriate plans to cope with drought conditions.  相似文献   
72.
This study aims to assess watershed‐scale impacts of changing climate on sediment, phosphorus, nitrogen and pesticide (atrazine) fluxes over the 21st century at the watershed scale. In particular, changes in dissolved and particulate forms of water quality constituents in response to climate change are investigated. The hydrologic model Soil and Water Assessment Tool was calibrated and evaluated in a primarily agricultural watershed in the Midwestern United States to simulate hydrologic and water quality processes on a daily basis over the 2015–2099 time horizon. The model was then driven with 112 distinct statistically downscaled climate projections representing Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) low, moderate and high greenhouse gas emission scenarios. Projected hydrologic and water quality responses were categorized according to the three IPCC SRES emission scenarios for summarizing and synthesizing results over early‐century (2015–2034), mid‐century (2045–2064) and late‐century (2080–2099) assessment. Results revealed clear warming trends in the study area, whereas small increases in precipitation were predicted. Streamflow, sediment and total nutrient loads did not differ noticeably between assessment periods. However, the proportion of dissolved to total nutrients increased significantly from early‐century to late‐century periods. With the exception of total atrazine in the mid‐century period, predicted pollutant loads for a given assessment period did not differ between emission pathways for a given assessment period. Changes in pollutant fluxes showed pronounced monthly variability. The projected increase in readily available forms of nutrients has important implications for the ecological health of water systems and management of drinking water supplies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
73.
In this study, an approach is presented for handling hydraulic uncertainties in the prediction of floodplain. Different factors affect river flood characteristics. Furthermore, the high changeability of flooding conditions leads to high variability of the inundation. River morphology is one of the most effective factors in river flood characteristics. This factor is influenced by sedimentation and erosion in the river cross sections, which affects the discharge variation. The depth and the width of the river cross section lead to an increase or decrease in the river flow path. This results in changes in the extent of the floodplain based on the generated rainfall. The inundated region boundaries are determined by utilizing the mean first‐order second‐moment analysis. The proposed method is applied to the Kajoo River in the south‐eastern part of Iran. Determination of floodplain uncertainty is a damage‐reduction policy in this region. Also, it is useful to prepare the necessary activities for overcoming the flood hazards. Climate change is the second effective factor on the floodplain uncertainties. Climate change affects the magnitude, extent and depth of inundation and it may intensify the flood problem. Therefore, the future rainfall pattern of the study area under climate change is simulated to evaluate its impacts on the river flow characteristic. Subsequently, a hydraulic routing model is used to determine floodplain. Finally, the copula function is used to estimate the joint probability of the changes in the inundation area due to changes in river morphology and the rainfall changes due to impacts of climate change. Results show that the uncertainties of the extent of floodplain are affected by climate change and river morphology, leading to noticeable changes in the magnitude and frequency of floods. Evaluating these impacts and estimating corresponding river discharges will help in the study of river dynamics, and will also contribute towards devising effective mitigation and management strategies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
74.
An excess of fine sediment (grain size <2 mm) supply to rivers leads to reservoir siltation, water contamination and operational problems for hydroelectric power plants in many catchments of the world, such as in the French Alps. These problems are exacerbated in mountainous environments characterized by large sediment exports during very short periods. This study combined river flow records, sediment geochemistry and associated radionuclide concentrations as input properties to a Monte Carlo mixing model to quantify the contribution of different geologic sources to river sediment. Overall, between 2007 and 2009, erosion rates reached 249 ± 75 t km?2 yr?1 at the outlet of the Bléone catchment, but this mean value masked important spatial variations of erosion intensity within the catchment (85–5000 t km?2 yr?1). Quantifying the contribution of different potential sources to river sediment required the application of sediment fingerprinting using a Monte Carlo mixing model. This model allowed the specific contributions of different geological sub‐types (i.e. black marls, marly limestones, conglomerates and Quaternary deposits) to be determined. Even though they generate locally very high erosion rates, black marls supplied only a minor fraction (5–20%) of the fine sediment collected on the riverbed in the vicinity of the 907 km2 catchment outlet. The bulk of sediment was provided by Quaternary deposits (21–66%), conglomerates (3–44%) and limestones (9–27%). Even though bioengineering works conducted currently to stabilize gullies in black marl terrains are undoubtedly useful to limit sediment supply to the Bléone river, erosion generated by other substrate sources dominated between 2007 and 2009 in this catchment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
75.
The modeling study on the Mrihla anticline was carried out using two techniques, i.e., excess area law and balanced cross section. The results show that this structure is likely affected by at least two compressive phases. The interpretation of surface (bedding dips, thickness, lithology, etc.) and subsurface (seismic lines) data along the cross section indicates that the Mrihla structure has a shortening of about 525 m that is evolved above a detachment layer formed by gypsum Triassic formation. The top of this layer is situated at a depth of about 3,890 m from the top of the Aptian dolomitic level, known in Central Tunisian Atlas as Serdj Formation. The kinematic of the investigated structure is a combination of two deformation models. The first is the halokenitic model, defined by the flowing of Triassic ductile material upward toward the surface through the deep Mrihla fault, which is parallel to Mrihla anticline. The second is the fault propagation fold model, characterized by thin-skin deformation mechanics in relation with the movement of the Mrihla fault.  相似文献   
76.
Knowledge of the magnitude and orientation of the initial in situ stress of rock mass in underground spaces in mining, construction, and oil projects are so vital; hence, putting it aside could not only cost a lot rather incur some irrecoverable damage. Various methods are available to estimate in situ stress in rock mass. However, the most commonly used one, i.e., hydraulic fracturing (HF) method is considered expensive and time consuming. As a matter of fact, laboratory methods based on drilled “core” have become prevalent these days considering them simple, cheap, and quick. Taking into account one such procedure, i.e., deformation rate analysis (DRA), the current research tries to review the DRA capability in determining the magnitude of initial in situ stress is in different parts of stress–strain curve. Further, an investigation was made about the usage of DRA method for both brittle and ductile rocks. To compare the DRA and hydraulic fracturing methods in in situ stress measurement, the water conveyance tunnel of Gotvand Dam was selected as a case study. The DRA tests were conducted on core samples prepared from blocks of tuff (as brittle) and soft sandstones (as ductile) from shallow quarry. The results show that the DRA method is suitable for all types of intact rock and that this could easily estimate in situ stress values. A comparison between in situ stress values obtained by DRA and those of HF method show the feasibility of geotechnical project, simplicity, speed, and low cost.  相似文献   
77.
This paper addresses deficiencies of stochastic Weather Generators (WGs) in terms of reproduction of low-frequency variability and extremes, as well as the unanticipated effects of changes to precipitation occurrence under climate change scenarios on secondary variables. A new weather generator (named IWG) is developed in order to resolve such deficiencies and improve WGs performance. The proposed WG is composed of three major components, including a stochastic rainfall model able to reproduce realistic rainfall series containing extremes and inter-annual monthly variability, a multivariate daily temperature model conditioned to the rainfall occurrence, and a suitable multi-variate monthly generator to fit the low-frequency variability of daily maximum and minimum temperature series. The performance of IWG was tested by comparing statistical characteristics of the simulated and observed weather data, and by comparing statistical characteristics of the simulated runoff outputs by a daily rainfall-runoff model fed by the generated and observed weather data. Furthermore, IWG outputs are compared with those of the well-known LARS-WG weather generator. The tested characteristics are a variety of different daily statistics, low-frequency variability, and distribution of extremes. It is concluded that the performance of the IWG is acceptable, better than LARS-WG in the majority of tests, especially in reproduction of extremes and low-frequency variability of weather and runoff series.  相似文献   
78.
The accurate delineation of area plays a key role in the surveying of land change detection and the classification of land covers. In a hydrologic system, the watershed delineation and the detection of the boundaries among watershed is a basic method for performing spatial analyses. After recent advances in image processing and raster-based spatial analysis in geographic information systems, and being easily accessible data via various sources especially through remote sensing, the reliable determination of topographical boundaries possible is possible. Therefore, an integrated approach of data analysis and modeling can accomplish the task of delineation. The main aim in this research is to evaluate the delineation method of watershed boundary using four different digital elevation models (DEM) including advanced spaceborne thermal emission and reflection radiometer (ASTER), Shuttle Radar Topographic Mission (SRTM), digital topography, and topographic maps. In order to determine a true reference of boundary of watershed, sample data were also obtained by field survey and using global positioning system (GPS). The comparison reference points and the results of these data showed the average distance difference between reference boundary, and the result of ASTER data was 43 m. However, the average distance between GPS reference and the other data was high; the difference between the reference data and SRTM was 307 m, and for digital topographic map, it was 269 m. The average distance between topographic map and the GPS points differed 304 m as well. For the statistical analysis of comparison, the coordinates of 230 points were determined; the paired comparisons were also performed to measure the coefficient of determination, R 2, as well as analysis of variance in SPSS software. As a result, the R 2 values for the ASTER data with the digital topography and topographic map were 0.0157 and 0.171, respectively. The results showed that there were statistically significant differences in distances among the four means of the selected models. Therefore, considering other three methods, the ASTER DEM is the most suitable applicable data to delineate the borders of watersheds, especially in rugged terrains. In addition, the calculated flow directions of stream based on ASTER are close to natural tributaries as well as real positions of streams.  相似文献   
79.
Acta Geotechnica - This paper presents a constitutive model enabled to simulate monotonic and cyclic behaviour of clay and sand in a unified framework. The bounding surface concept has been...  相似文献   
80.
Mineralogy and Petrology - Pegmatite-hosted garnets from four localities in the Boroujerd region, Lorestan (Western Iran), have been analysed for major and selected trace element compositions. The...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号