首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   1篇
测绘学   3篇
大气科学   4篇
地球物理   34篇
地质学   19篇
海洋学   1篇
天文学   6篇
自然地理   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2012年   2篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2003年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1978年   3篇
  1977年   3篇
  1973年   1篇
  1968年   1篇
  1961年   2篇
  1960年   3篇
  1956年   2篇
  1955年   2篇
  1954年   1篇
  1953年   1篇
  1951年   1篇
  1949年   1篇
  1928年   1篇
排序方式: 共有68条查询结果,搜索用时 31 毫秒
51.
This paper addresses the representation of lower tropospheric water vapor in the meteorological analyses—fully detailed estimates of atmospheric state—providing the wide temporal and spatial coverage used in many process studies. Analyses are produced in a cycle combining short forecasts from initial conditions with data assimilation that optimally estimates the state of the atmosphere from the previous forecasts and new observations, providing initial conditions for the next set of forecasts. Estimates of water vapor are among the less certain aspects of the state because the quantity poses special challenges for data assimilation while being particularly sensitive to the details of model parameterizations. Over remote tropical oceans observations of water vapor come from two sources: passive observations at microwave or infrared wavelengths that provide relatively strong constraints over large areas on column-integrated moisture but relatively coarse vertical resolution, and occultations of Global Positioning System provide much higher accuracy and vertical resolution but are relatively spatially coarse. Over low-latitude oceans, experiences with two systems suggest that current analyses reproduce much of the large-scale variability in integrated water vapor but have systematic errors in the representation of the boundary layer with compensating errors in the free troposphere; these errors introduce errors of order 10% in radiative heating rates through the free troposphere. New observations, such as might be obtained by future observing systems, improve the estimates of water vapor but this improvement is lost relatively quickly, suggesting that exploiting better observations will require targeted improvements to global forecast models.  相似文献   
52.
本文以MSIS90大气模式和3D NeUoG电离层模式为大气背景,用三维射线追踪法模拟研究了太阳活动强度、地方时、掩星平面方位角对弯曲角电离层残差和温度电离层残差的影响,以及电离层残差对全球日平均温度的影响.结果表明:电离层残差是平流层顶部(35~50 km)和中间层底部(50~70 km)掩星大气温度反演的主要误差.在太阳活动活跃期,电离层残差对单一掩星事件的平流层顶部平均温度的影响可达1.8 K,中间层底部平均温度的影响可达7 K;对全球日平均温度的影响在平流层顶可达-0.6 K,在70 km高度处可达1.2 K.发展新的电离层改正方法或电离层残差修正算法对提高掩星大气反演精度和全球气候监测意义重大.  相似文献   
53.
54.
Laser-induced breakdown spectroscopy (LIBS) is a simple atomic emission spectroscopy technique capable of real-time, essentially non-destructive determination of the elemental composition of any substance (solid, liquid, or gas). LIBS, which is presently undergoing rapid research and development as a technology for geochemical analysis, has attractive potential as a field tool for rapid man-portable and/or stand-off chemical analysis. In LIBS, a pulsed laser beam is focused such that energy absorption produces a high-temperature microplasma at the sample surface resulting in the dissociation and ionization of small amounts of material, with both continuum and atomic/ionic emission generated by the plasma during cooling. A broadband spectrometer-detector is used to spectrally and temporally resolve the light from the plasma and record the intensity of elemental emission lines. Because the technique is simultaneously sensitive to all elements, a single laser shot can be used to track the spectral intensity of specific elements or record the broadband LIBS emission spectra, which are unique chemical ‘fingerprints’ of a material. In this study, a broad spectrum of geological materials was analyzed using a commercial bench-top LIBS system with broadband detection from ∼200 to 965 nm, with multiple single-shot spectra acquired. The subsequent use of statistical signal processing approaches to rapidly identify and classify samples highlights the potential of LIBS for ‘geochemical fingerprinting’ in a variety of geochemical, mineralogical, and environmental applications that would benefit from either real-time or in-field chemical analysis.  相似文献   
55.
High quality observations of the atmosphere are particularly required for monitoring global climate change. Radio occultation (RO) data, using Global Navigation Satellite System (GNSS) signals, are well suited for this challenge. The special climate utility of RO data arises from their long-term stability due to their self-calibrated nature. The German research satellite CHAllenging Minisatellite Payload for geoscientific research (CHAMP) continuously records RO profiles since August 2001 providing the first opportunity to create RO based climatologies for a multi-year period of more than 5 years. A period of missing CHAMP data from July 3, 2006 to August 8, 2006 can be bridged with RO data from the GRACE satellite (Gravity Recovery and Climate Experiment). We have built seasonal and zonal mean climatologies of atmospheric (dry) temperature, microwave refractivity, geopotential height and pressure with 10° latitudinal resolution. We show representative results with focus on dry temperatures and compare them with analysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF). Although we have available only about 150 CHAMP profiles per day (compared to millions of data entering the ECMWF analyses) the overall agreement between 8 and 30 km altitude is in general very good with systematic differences <0.5 K in most parts of the domain. Pronounced systematic differences (exceeding 2 K) in the tropical tropopause region and above Antarctica in southern winter can almost entirely be attributed to errors in the ECMWF analyses. Errors resulting from uneven sampling in space and time are a potential error source for single-satellite climatologies. The average CHAMP sampling error for seasonal zonal means is <0.2 K, higher values occur in restricted regions and time intervals which can be clearly identified by the sampling error estimation approach we introduced (which is based on ECMWF analysis fields). The total error of this new type of temperature climatologies is estimated to be <0.5 K below 30 km. The recently launched Taiwan/U.S. FORMOSAT-3/COSMIC constellation of 6 RO satellites started to provide thousands of RO profiles per day, but already now the single-satellite CHAMP RO climatologies improve upon modern operational climatologies in the upper troposphere–lower stratosphere and can act as absolute reference climatologies for validation of more bias-sensitive climate datasets and models.  相似文献   
56.
MEGA, short for Medium Energy Gamma-ray Astronomy, is the development of a new technology telescope in the energy band 0.4--50\ MeV. The wide energy range of MEGA, which spans nuclear γ-ray lines and energetic continuum spectra, the large field of view, and the capacity for polarimetry enables unique investigations into cosmic nucleosynthesis, particle accelerators around compact objects, and explosive high-energy events. We describe the development and tests of a prototype detector. Results from laboratory tests using radioactive sources and from a beam test calibration are presented and an outlook of a potential space mission is sketched.  相似文献   
57.
Gottfried Proft   《Limnologica》2003,33(4):359-372
The CO2 content, air saturation and calcite equilibrium of the River Ilm and some of its tributaries were analysed. CO2 content was measured by degasing the CO2 from water. The CO2 level is a very sensitive indicator for a low pollution in oxygen saturated waters. Clean running waters have a CO2 content close to the air saturation of 0.1–0.3 mg C l−1. Ground water and springs are rich in CO2. Polluted waters are characterised by higher CO2 contents, also organic pollution can result in high values of CO2. Carbon dioxide concentration of streams and brooks is limited by re-aeration.

The headwater region (softwater) of the River Ilm is unsaturated, the hard water in the middle- and underflow is oversaturated. In summer and autumn high saturation could be found, but without autochthonous calcite precipitation like in hard water lakes.  相似文献   

58.
We have speculated on the influence of organic material on extinction and absorption coefficients and liquid water content of fogs and of clouds immediately after their condensational stage. It results therefore, that the reduction of the speed of growth from fog to cloud droplets due to the presence of organic films largely reduces the properties mentioned. Compared to that their increase coming from the surface tension reduction due to organic material being dissolved or building up films is expected to be less effective.  相似文献   
59.
The dependency on relative humidity of the settling velocity of aerosol particles in stagnant air and of the diffusion coefficient due to Brownian motion of aerosol particles was computed for six aerosol types and different particles sizes in dry state. The computations are based (1) on mean bulk densities of dry aerosol particles obtained from measurements or from the knowledge of the chemical composition of the particles, (2) on micro-balance measurements of the water uptake per unit mass of dry aerosol substance versus water activity at thermodynamic equilibrium, and (3) on measurements of the equilibrium water activity of aqueous sea salt solutions. The results show a significant dependence of the settling velocity and Brownian diffusion of aerosol particles on relative humidity and on the particle's chemical composition.Nomenclature A surface parameter of a particle - B surface parameter of a particle - c L velocity of sound in moist air - C 1+Kn[A+Qexp(–B/Kn]=slip correction - D diffusion coefficient of a particle - D 1 D(=1)=diffusion coefficient of a spherical particle - f P w /P we (T,P)=relative humidity (f=0 dry air,f=1 saturated air) - g acceleration due to gravity - g |g| - k 1.3804×10–16 erg/°K=Boltzmann constant - Kn L /r=Knudsen number of a particle - Kn 0 0L /r 0=Knudsen number of a dry particle - m 4r 3/3=mass of a particle - m L 4r 3 L /3=mass of the moist air displaced by a particle - M mobility of a particle - M 0 molar mass of dry air - M w molar mass of water - Ma |u–u L |/c L =Mach number of the particles motion relative to the ambient air - n particle number per unit volume of air - P P 0+P w =pressure of the moist air - P 0 partial pressure of the dry air - P w partial pressure of the water vapour - P we P we (T,P)=equilibrium partial water vapour pressure over a plane surface of water saturated with air - Q surface parameter of a particle - r equivalent radius of a particle (radius of a sphere with the particles volume) - r 0 equivalent radius of a particle in dry state - R 1+0.13Re 0.85=inertia correction - R 0 specific gas constant of dry air - R w specific gas constant of water - Re 2r L uu L / L =Reynolds number of the particles motion relative to the ambient air - t time - T absolute temperature - u velocity of a particle - u (amount of the) settling velocity of a particle in stagnant air - u 1 u(=1)=(amount of the) settling velocity of a spherical particle in stagnant air - u L velocity of the ambient moist air (far enough from the particle where the flow pattern remains undistorted) - W drag coefficient of a particles equivalent sphere - empirical parameter in equation (3.1) - dynamic viscosity of a particles liquid cover - L dynamic viscosity of moist air - 0L dynamic viscosity of dry air (at the same pressure and temperature like the moist air) - celsius temperature - dynamic shape factor of a particle (=1 for a sphere) - 0 dynamic shape factor of a dry particle - L mean free path of the molecules in moist air - 0L mean free path of the molecules in dry air (at the same pressure and temperature like the moist air) - Po mean free path of the molecules in dry air at the pressureP 0 of the dry air and the temperature given - factor of solid to liquid change-over (=1 for a solid particle) - mean bulk density of a particle - L density of the moist air - 0L density of the dry air at the same pressure and temperature like the moist air - 0 mean bulk density of a dry particle - 0 mean diameter of the molecules of dry air - w diameter of water molecules - relaxation time of a particle - gradient operation - 3.141593  相似文献   
60.
In an earlier paper (1978), Gottfried presented a method for combining distribution data for float-sink coal-cleaning devices into a single generalized distribution curve which, for a given device and feed size, is independent of specific gravity of separation. A non-linear, exponential-type equation was utilized to represent the generalized distribution curve, along with the corresponding generalized probable error. Distribution data for six common coal-cleaning devices have previously been treated by this method.This paper is an extension of two previous studies (Gottfried, 1978, 1980). The method described above is applied to three different float-sink coal-cleaning devices: Baum jig (replacing previously reported results), Batac jig and Dynawhirlpool separator. Results for the Baum jig and Batac jig reflect a two-stage separation process, with a set of generalized distribution curves obtained for each stage and another set for the overall separation. Several different feed size fractions are given for each vessel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号