首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   2篇
测绘学   9篇
大气科学   25篇
地球物理   44篇
地质学   98篇
海洋学   39篇
天文学   84篇
自然地理   10篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   2篇
  2016年   5篇
  2015年   8篇
  2014年   6篇
  2013年   16篇
  2012年   11篇
  2011年   10篇
  2010年   11篇
  2009年   19篇
  2008年   15篇
  2007年   9篇
  2006年   5篇
  2005年   13篇
  2004年   19篇
  2003年   12篇
  2002年   12篇
  2001年   12篇
  2000年   6篇
  1999年   6篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1994年   6篇
  1993年   5篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   5篇
  1983年   6篇
  1982年   3篇
  1981年   5篇
  1980年   7篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1972年   3篇
  1971年   3篇
  1970年   3篇
  1949年   1篇
排序方式: 共有309条查询结果,搜索用时 15 毫秒
121.
122.
This is a progress report on calculations of near-ultraviolet spectrawith Ben Dorman at NASA/Goddard, for the ultimate purpose of extractingage and metallicity from extragalactic spectra. We are calculating fromfirst principles a grid of spectra covering 2200–3400 Å using theKurucz program SYNTHE, beginning with stars of metallicity less thanone-fifth solar ([Fe/H] < ?0.7). For these stars, LTE calculationsusing known opacities and line lists including only transitions measuredin the laboratory, coupled with standard line-blanketed LTE models, providea satisfactory match to the spectra of turnoff stars of temperaturesT eff = 5750 K – 6250 K. For more metal-rich stars, two problemsarise: lines without a laboratory identification become increasinglyinfluential, and the cores of all strong lines become too strong. Theseproblems must be addressed to match near-UV spectra of turnoff stars ofsolar metallicity or higher.  相似文献   
123.
124.
125.
Subglacial conditions strongly influence the flow of ice‐sheets, in part due to the availability of melt water. Contemporary ice sheets are retreating and are affected by increased melting as climate warms. The south Swedish uplands (SSU) were deglaciated during the relatively warm Bølling‐Allerød interval, and by studying the glacial landforms there it is possible to increase the understanding of the subglacial environment during this period of warming. Across the study area, vast tracts of hummocks have long been recognized. However, recent mapping shows a pattern of elongated zones of hummocks radially oriented, hereafter referred to as ‘hummock corridors’. Morphometric parameters were measured on the hummock corridors using a 2 m horizontal resolution digital elevation model. Corridor width varies between 0.2 and 4.9 km and their length between 1.5 and 11.8 km. A majority of hummock corridors are incised in drumlinised till surfaces. The pattern of hummock corridors shows a clear relation to the overall ice‐flow. Further, hummock corridors do not follow topographic gradients, and in at least one place an esker overlies hummocks on the corridor floor. The lateral spacing of hummock corridors and corridor morphology are similar to tunnel valleys, eskers and glaciofluvial corridors reported elsewhere. Such relationships support a subglacial genesis of the corridors in the SSU by water driven by the subglacial hydraulic gradient and that hummock corridors are forms that can be identified as tunnel valleys and glaciofluvial corridors (GFC). Ages were assigned to hummock‐corridor cross‐sections from a deglacial reconstruction of the Fennoscandian Ice Sheet. By comparing the frequency of corridors per age interval with climate variations from a Greenland ice core, we hypothesize that an increase in the number of corridors is related to the Bølling‐Allerød warming, indicating a higher rate of delivery of surface melt water to the bed at this time. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
126.
Groundwater management decisions are often founded upon estimates of aquifer hydraulic properties, recharge and the rate of groundwater usage. Too often hydraulic properties are unavailable, recharge estimates are very uncertain, and usage is unmetered or infrequently metered over only recent years or estimated using numerical groundwater models decoupled from the drivers of drawdown. This paper extends the HydroSight groundwater time-series package ( http://peterson-tim-j.github.io/HydroSight/ ) to allow the joint estimation of gross recharge, transmissivity, storativity, and daily usage at multiple production bores. A genetic evolutionary scheme was extended from estimating time-series model parameters to also estimating time series of usage that honor metered volumes at each production bore and produces (1) the best fit with the observed hydrograph and (2) plausible estimates of actual evapotranspiration and hence recharge. The reliability of the approach was rigorously tested. Repeated calibration of models for four bores produced estimates of transmissivity, storativity, and mean recharge that varied by a factor of 0.22-0.32, 0.13-0.2, and 0.03-0.48, respectively, when recharge boundary effects were low and the error in monthly, quarterly, and biannual metered usage was generally <10%. Application to the 30 observation bores within the Warrion groundwater management area (Australia), produced a coefficient of efficiency of ≥0.80 at 22 bores and ≥0.90 at 12 bores. The aquifer transmissivity and storativity were reasonably estimated, and were consistent with independent estimates, while mean gross recharge may be slightly overestimated. Overall, the approach allows greater insights from the available data and provides opportunity for the exploration of usage and climatic scenarios.  相似文献   
127.
128.
Based on the spectra of 4 high-redshift quasars (resolution 2A) obtained by us [1–5] using IPCS on the RGO Cassegrain spectrograph of the AAT, we point out the following. 1. Auto-correlation peaks at in PKS 0805+046 and PKS 1442+101 suggest that the large number of absorption lines shortward of Lα in high redshift quasars are due to absorption by hydrogen clouds. 2. The distribution of absorption lines and the correlation function of indicate that PKS 0528-250 may be an exception, requiring further observation. 3. Absorption redshift systems containing metallic lines may be produced by either matter ejected from the quasar, or an associated galaxy cluster or an intervening galaxy. 4. The randomness in the column density and the dispersion velocity deduced from the curve of growth of the pair supports the hypothesis that the pure Lα absorption comes from primitive hydrogen clouds in the early, exploding universe. 5. The number of hydrogen clouds per unit redshift interval is determined by the data of absorption lines of quasars with Z > 3.  相似文献   
129.
Petrology and genesis of natrocarbonatite   总被引:6,自引:0,他引:6  
Microprobe analyses of phenocrysts and groundmass, and crystal-size distributions of phenocrysts of pahoehoe natrocarbonatite lavas of the 1963 eruption of Oldoinyo Lengai have been determined. Nyerereite phenocrysts are homogeneous, with average composition Nc41Kc9Cc50 (neglecting F, Cl, P2O5, and SO3) where Nc=Na2CO3, Kc=K2CO3, and Cc= (Ca,Sr)CO3. Gregoryite phenocrysts have turbid, pale brown, oscillatorily zoned cores (average composition Nc77Kc5Cc18) with 0–30% oriented inclusions of exsolved nyerereite. Overgrowths on gregoryites (30 m wide) are relatively sodic (Nc81Kc4Cc15) and are free of inclusions. Cores and rims are rich in SO3 (4%) and P2O5 (2%). Blebs of pyrite-alabandite mixtures (100 m) occur in the groundmass. The groundmass has the simplified composition Nc65Kc15Cc20, less calcic than the composition of the 1-kbar nyerereite+gregoryite +liquid cotectic in the ternary system Nc-Kc-Cc. Groundmass quench growth of alkali halides + carbonate was followed by slower growth of coarse-grained and irregular gregoryite +KCl+BaCO3. Crystal size distributions of gregoryite and nyerereite in one sample are linear, implying little loss or gain of phenocrysts by crystal settling. AverageG is 0.15 mm, compared toG=0.03 mm for combeite phenocrysts from consanguineous nephelinite. Assuming an equal residence time () for both lavas, the apparent crystal growth rate (G) in carbonate melt is 5 times greater than in peralkaline undersaturated silicate melt. Data from experiments with natrocarbonatite and related synthetic systems indicate that Na–K–Ca carbonatite magmas which crystallize calcite cannot fractionate to nyerereite+gregoryite +liquid assemblages. Natrocarbonatites plot in the liquidus field of nyerereite, and minor fractionation of nyerereite to produce the erupted lavas is indicated. The term natrocarbonatite has been inappropriately applied to other eruptive rocks with calcite phenocrysts, and the only known occurrence of gregoryite-bearing natrocarbonatite is Oldoinyo Lengai. Natrocarbonatite probably originates by liquid immiscibility from strongly peralkaline nephelinites, which have also been erupted at Oldoinyo Lengai.  相似文献   
130.
Estimation of aquifer hydraulic properties is essential for predicting the response of an aquifer to extractions and hence estimating the availability of the groundwater resources. Aquifer tests are commonly used for the estimation of aquifer properties; however, they can be expensive and often only characterize the short‐term response of the aquifer. This paper presents a time series modelling approach to estimating aquifer hydraulic properties. It is applied to 42 bores monitoring an unconfined aquifer within an irrigation region of south‐eastern Australia, and the resulting probabilistic estimate of hydraulic properties are evaluated against pumping test estimates. It is demonstrated that the time series modelling can provide a reliable estimate of the hydraulic properties that are typical of a very long‐term pumping test. Furthermore, the application of the time series modelling to 42 bores provided novel insights into the aquifer heterogeneity. We encourage others to further test the approach and the source code is available from: http://www.mathworks.com/matlabcentral/fileexchange/48546‐peterson‐tim‐j‐groundwater‐statistics‐toolbox Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号