首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   445篇
  免费   13篇
  国内免费   6篇
测绘学   38篇
大气科学   59篇
地球物理   53篇
地质学   179篇
海洋学   40篇
天文学   70篇
综合类   4篇
自然地理   21篇
  2021年   6篇
  2020年   4篇
  2018年   20篇
  2017年   20篇
  2016年   17篇
  2015年   13篇
  2014年   16篇
  2013年   28篇
  2012年   13篇
  2011年   26篇
  2010年   12篇
  2009年   32篇
  2008年   16篇
  2007年   23篇
  2006年   25篇
  2005年   15篇
  2004年   14篇
  2003年   17篇
  2002年   17篇
  2001年   17篇
  2000年   8篇
  1999年   11篇
  1998年   8篇
  1997年   10篇
  1996年   2篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1988年   4篇
  1987年   11篇
  1986年   2篇
  1985年   7篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1976年   2篇
  1975年   2篇
  1973年   3篇
  1971年   2篇
  1967年   1篇
  1966年   1篇
  1962年   1篇
  1961年   1篇
  1959年   1篇
  1958年   1篇
  1957年   1篇
  1955年   1篇
  1950年   1篇
排序方式: 共有464条查询结果,搜索用时 31 毫秒
201.
The Middle Jurassic Mirdita Ophiolite in northern Albania is part of an ophiolite belt occurring between the Apulian and Pelagonian subcontinents in the Balkan Peninsula. The upper mantle and crustal units of the Mirdita Ophiolite show major changes in thickness, rock types, and chemical compositions from west to east as a result of its complex evolution in a suprasubduction zone (SSZ) environment. The  3–4-km-thick Western Mirdita Ophiolite (WMO) includes lherzolite–harzburgite, plagioclase–lherzolite, plagioclase–dunite in its upper mantle units and a plutonic complex composed of olivine gabbro, troctolite, ferrogabbro, and gabbro. These peridotites and gabbroic rocks are overlain directly by a  600-m-thick extrusive sequence containing basaltic pillow lavas and hyaloclastites. Sheeted dikes are rare in the WMO. The  12-km-thick Eastern Mirdita Ophiolite (EMO) includes tectonized harzburgite and dunite with extensive chromite deposits, as well as ultramafic cumulates including olivine clinopyroxenite, wehrlite, olivine websterite, and dunite forming a transitional Moho with the overlying lower crustal section. The plutonic rocks are made of pyroxenite, gabbronorite, gabbro, amphibole gabbro, diorite, quartz diorite, and plagiogranite. A well-developed sheeted dike complex has mutually intrusive relations with the underlying isotropic gabbros and plagiogranites and feeds into the overlying pillow lavas. Dike compositions change from older basalt to basaltic andesite, andesite, dacite, quartz diorite, to late-stage andesitic and boninitic dikes as constrained by crosscutting relations. The  1.1-km-thick extrusive sequence comprises basaltic and basaltic andesitic pillow lavas in the lower 700 m, and andesitic, dacitic and rhyodacitic massive sheet flows in the upper 400 m. Rare boninitic dikes and lavas occur as the youngest igneous products within the EMO. The basaltic and basaltic andesitic rocks of the WMO extrusive sequence display MORB affinities with Ti and Zr contents decreasing upsection (TiO2 = 3.5–0.5%, Zr = 300–50 ppm), while Nd(T) (+ 8 to + 6.5) varies little. These magmas were derived from partial melting of fertile MORB-type mantle. Fractional crystallization was important in the evolution of WMO magmas. The low Ti and HREE abundances and Cs and Ba enrichments in the uppermost basaltic andesites may indicate an increased subduction influence in the evolution of the late-stage WMO magmas. Basaltic andesites in the lower 700 m of the EMO volcanic sequence have lower TiO2 ( 0.5%) and Zr ( 50 ppm) contents but Nd(T) values (+ 7 to + 6.5) are similar to those of the WMO lavas. These rocks show variable enrichment in subduction-enriched incompatible elements (Cs, Ba, Th, U, LREE). The basaltic andesites through dacites and boninites within the upper 400 meters of EMO lavas show low TiO2 ( 0.8–0.3%) and Nd(T) (+ 6.5 to + 3.0). The mantle source of these rocks was variably enriched in Th by melts derived from subducted sediments as indicated by the large variations in Ba, K, and Pb contents. EMO boninitic dikes and lavas and some gabbroic intrusions with negative Nd (T) values (− 1.4 and − 4.0, respectively) suggest that these magmas were produced from partial melting of previously depleted, ultra-refractory mantle. The MORB to SSZ transition (from west to east and stratigraphically upwards in the Mirdita Ophiolite and the progression of the Nd(T) values from + 8.0 to − 4.0 towards the east resulted from an eastward shift in protoarc–forearc magmatism, keeping pace with slab rollback in this direction. The mantle flow above the retreating slab and in the arc-wedge corner played a major role in the evolution of the melting column, in which melt generation, aggregation/mixing and differentiation occurred at all levels of the sub-arc/forearc mantle. The SSZ Mirdita Ophiolite evolved during the intra-oceanic collapse and closure of the Pindos marginal basin, which had a protracted tectonic history involving seafloor spreading, protoarc rifting, and trench-continent collision.  相似文献   
202.
203.
The Paleogene and Neogene evolution of Austroalpine basement units east of the Tauern Window is characterised by the formation of two major sets of faults: (1) ESE–WNW- to E–W-trending faults, associated with ENE- and NNW-trending conjugate structures and (2) N–S to NNE-SSW striking structures, mainly acting as high-angle normal faults, often associated with E-dipping low-angle normal faults along the western margin of the Styrian Basin.Together with the stratigraphic evolution of the Styrian and Lavanttal Basins and the related subsidence histories a tectonic evolution may be reconstructed for this part of the Eastern Alps. In the southern part of the Koralm Massif, WNW-trending fractures were activated as dextral strike-slip faults, associated with the evolution of WNW-trending troughs filled up with coarse block debris. W- to WNW-trending fractures were reactivated as normal faults, indicating N–S extension. It is assumed that these phases resulted in subsidence and block debris sedimentation in Karpatian and Badenian times (ca. 17–13 Ma).In the Western Styrian Basin no Sarmatian (13–11.5 Ma) sediments are observed; Pannonian (11.5 to 7.1 Ma) sediments are restricted to the Eastern Styrian Basin. This indicates, that the Koralm basement and the Western Styrian Basin were affected by post-Sarmatian uplift, coinciding with a re-activation of N-trending normal faults along the eastern margin of the Koralm Massif. Therefore, we suggest that the final uplift of the Koralm Complex, partly together with the Western Styrian Basin, occurred during the early Pannonian (at approximately 10 Ma). The elevation of clastic deposits indicates that the Koralm Complex was elevated by approximately 800 m during this phase, associated with an additional phase of E–W-directed extension accommodated by N–S striking normal faults.  相似文献   
204.
Theoretical and Applied Climatology - For an improved understanding of the hydrometeorological conditions of the Tana River basin of Kenya, East Africa, its joint atmospheric-terrestrial water...  相似文献   
205.
A generalized cubic equation of state is given. The Peng-Robinson and the Soave-Redlich-Kwong equations are special cases of this equation. The generalized equation of state is precisely as simple and computationally efficient as these classical equations. Through comparison with the Span-Wagner equation for CO 2, we obtain an improved density accuracy in predefined temperature-pressure domains. The generalized equation is then verified through two relevant examples of CO 2 injection and migration. Comparisons are made with other standard cubic EOS in order to show the range of solutions obtained with less accurate EOS.  相似文献   
206.
It is well accepted that summer precipitation can be altered by soil moisture condition. Coupled land surface – atmospheric models have been routinely used to quantify soil moisture – precipitation feedback processes. However, most of the land surface models (LSMs) assume a vertical soil water transport and neglect lateral terrestrial water flow at the surface and in the subsurface, which potentially reduces the realism of the simulated soil moisture – precipitation feedback. In this study, the contribution of lateral terrestrial water flow to summer precipitation is assessed in two different climatic regions, Europe and West Africa, for the period June–September 2008. A version of the coupled atmospheric-hydrological model WRF-Hydro with an option to tag and trace land surface evaporation in the modelled atmosphere, named WRF-Hydro-tag, is employed. An ensemble of 30 simulations with terrestrial routing and 30 simulations without terrestrial routing is generated with random realizations of turbulent energy with the stochastic kinetic energy backscatter scheme, for both Europe and West Africa. The ensemble size allows to extract random noise from continental-scale averaged modelled precipitation. It is found that lateral terrestrial water flow increases the relative contribution of land surface evaporation to precipitation by 3.6% in Europe and 5.6% in West Africa, which enhances a positive soil moisture – precipitation feedback and generates more uncertainty in modelled precipitation, as diagnosed by a slight increase in normalized ensemble spread. This study demonstrates the small but non-negligible contribution of lateral terrestrial water flow to precipitation at continental scale.  相似文献   
207.
The impacts of forest conversion on runoff generation in the tropics have received much interest, but scientific progress is still hampered by challenging fieldwork conditions and limited knowledge about runoff mechanisms. Here, we assessed the runoff generation, flow paths and water source dynamics of a pristine rainforest catchment in Costa Rica using end member mixing analysis (EMMA) and a Bayesian mixing model (MixSIAR). Geochemical tracer data collected over a 4-week field campaign were combined with tritium data used to assess potential deeper groundwater flow pathways to the perennial stream. The streamflow composition was best captured using three end-members, namely throughfall, shallow (5–15 cm) and deeper (15–50 cm) soil water. We estimated the end-member contributions to the main stream and two tributaries using the two mixing approaches and found good agreement between results obtained from EMMA and MixSIAR. The system was overwhelmingly dominated by near-surface sources, with little evidence for deeper and older groundwater as tritium-derived baseflow mean transit time was between 2.0 and 4.4 years. The shallow soil flow pathway dominated streamflow contributions in the main stream (median 39% and 49% based on EMMA and MixSIAR, respectively), followed by the deeper soil (32% and 31%) and throughfall (25% and 19%). The two tributaries had even greater shallow soil water contributions relative to the main stream (83% and 74% for tributary A and 42% and 63% for tributary B). Tributary B had no detectable deep soil water contribution, reflecting the morphology of the hillslope (steeper slopes, shallower soils and lower vegetation density compared to hillslope A). Despite the short sampling campaign and associated uncertainties, this study allowed to thoroughly assess runoff generation mechanisms in a humid tropical catchment. Our results also provide a first comparison of two increasingly used mixing models and suggest that EMMA and MixSIAR yield comparable estimates of water source partitioning in this tropical, volcanic rainforest environment.  相似文献   
208.
209.
The effect of alkalis on the solubility of H2O and CO2 in alkali-rich silicate melts was investigated at 500 MPa and 1,250 °C in the systems with H2O/(H2O + CO2) ratio varying from 0 to 1. Using a synthetic analog of phonotephritic magma from Alban Hills (AH1) as a base composition, the Na/(Na + K) ratio was varied from 0.28 (AH1) to 0.60 (AH2) and 0.85 (AH3) at roughly constant total alkali content. The obtained results were compared with the data for shoshonitic and latitic melts having similar total alkali content but different structural characteristics, e.g., NBO/T parameter (the ratio of non-bridging oxygens over tetrahedrally coordinated cations), as those of the AH compositions. Little variation was observed in H2O solubility (melt equilibrated with pure H2O fluid) for the whole compositional range in this study with values ranging between 9.7 and 10.2 wt. As previously shown, the maximum CO2 content in melts equilibrated with CO2-rich fluids increases strongly with the NBO/T from 0.29 wt % for latite (NBO/T = 0.17) to 0.45 wt % for shoshonite (NBO/T = 0.38) to 0.90 wt % for AH2 (NBO/T = 0.55). The highest CO2 contents determined for AH3 and AH1 are 1.18 ± 0.05 wt % and 0.86 ± 0.12 wt %, respectively, indicating that Na is promoting carbonate incorporation stronger than potassium. At near constant NBO/T, CO2 solubility increases from 0.86 ± 0.12 wt % in AH1 [Na/(Na + K)] = 0.28, to 1.18 ± 0.05 wt % in AH3 [Na/(Na + K)] = 0.85, suggesting that Na favors CO2 solubility on an equimolar basis. An empirical equation is proposed to predict the maximum CO2 solubility at 500 MPa and 1,100–1,300 °C in various silicate melts as a function of the NBO/T, (Na + K)/∑cations and Na/(Na + K) parameters: \({\text{wt}}\% \;{\text{CO}}_{2} = - 0.246 + 0.014\exp \left( {6.995 \cdot \frac{\text{NBO}}{T}} \right) + 3.150 \cdot \frac{{{\text{Na}} + {\text{K}}}}{{\varSigma {\text{cations}}}} + 0.222 \cdot \frac{\text{Na}}{{{\text{Na}} + {\text{K}}}}.\) This model is valid for melt compositions with NBO/T between 0.0 and 0.6, (Na + K)/∑cation between 0.08 and 0.36 and Na/(Na + K) ratio from 0.25 to 0.95 at oxygen fugacities around the quartz–fayalite–magnetite buffer and above.  相似文献   
210.
A porosity change influences the transport properties and the elastic moduli of rock while circulating water in a geothermal reservoir. The static and dynamic elastic moduli can be derived from the slope of stress–strain curves and velocity measurements, respectively. Consequently, the acoustic velocities were measured while performing hydrostatic drained tests. The effect of temperature on static and dynamic elastic moduli and porosity variations of Flechtinger sandstone was investigated in a wide range of confining pressure from 2 to 55 MPa. The experiments were carried out in a conventional triaxial system whereas the pore pressure remained constant, confining pressure was cycled, and temperature was increased step wise (25, 60, 90, 120, and 140 °C). The porosity variation was calculated by employing two different theories: poroelasticity and crack closure. The porosity variation and crack porosity were determined by the first derivative of stress–strain curves and the integral of the second derivative of stress–strain curves, respectively. The crack porosity analysis confirms the creation of new cracks at high temperatures. The porosity variation was increasing with an increase in temperature at low effective pressures and was decreasing with a rise in temperature at high effective pressures. Both compressional and shear wave velocities were increasing with increasing pressure due to progressive crack closure. Furthermore, the thermomechanical behavior of Flechtinger sandstone was characterized by an inversion effect where the sign of the temperature derivative of the drained bulk modulus changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号