首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   2篇
  国内免费   5篇
测绘学   3篇
大气科学   1篇
地球物理   46篇
地质学   35篇
海洋学   8篇
天文学   2篇
综合类   6篇
自然地理   17篇
  2021年   1篇
  2019年   1篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2012年   1篇
  2011年   3篇
  2007年   3篇
  2006年   4篇
  2005年   5篇
  2004年   2篇
  2003年   6篇
  2002年   3篇
  2001年   3篇
  2000年   10篇
  1999年   7篇
  1998年   3篇
  1997年   2篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   5篇
  1975年   1篇
  1974年   4篇
  1973年   1篇
  1972年   1篇
  1971年   3篇
排序方式: 共有118条查询结果,搜索用时 234 毫秒
41.
42.
Abstract Miyanohara tonalite occurs in the middle part of the Higo metamorphic belt in the central Kyushu, Southwest Japan. This tonalite intrudes into early Permian Ryuhozan metamorphic rocks in the south and is intruded by Cretaceous Shiraishino granodiorite in the north. The Miyanohara tonalite yielded three mineral ages: (i) 110–100 Ma for Sm–Nd and Rb–Sr internal isochrons and for K–Ar hornblende; (ii) 183 Ma for Sm–Nd internal isochron; and (iii) 211 Ma for Sm–Nd internal isochron. The ages of 110–100 Ma may indicate cooling age due to the thermal effect of the Shiraishino granodiorite intrusion. The ages of 183 Ma and 211 Ma are consistent with timing of intrusion of the Miyanohara tonalite based on geologic constraints. The hornblende in the sample which gave 183 Ma shows discontinuous zoning under microscope, whereas the one which gave 211 Ma does not show zonal structure. These mineralogical features suggest that the 183 Ma sample has suffered severely from later tectonothermal effect compared with the 211 Ma sample. Therefore, the age of 211 Ma is regarded as near crystallization age for the Miyanohara tonalite. The magmatic process, geochronology and initial Sr and Nd isotope ratios for the Miyanohara tonalite are similar to those of early Jurassic granites from the Outer Plutonic Zone of the Hida belt that constitutes a marginal part of east Asia before the opening of the Japan Sea. Intrusion of the Miyanohara tonalite is considered to have taken place in the active continental margin during the late Triassic.  相似文献   
43.
Late Miocene (7–9 Ma) basaltic rocks from the Monbetsu‐Kamishihoro graben in northeast Hokkaido have chemical affinities to certain back‐arc basin basalts (referred to herein as Hokkaido BABB). Pb‐, Nd‐ and Sr‐isotopic compositions of the Hokkaido BABB and arc‐type volcanic rocks (11–13 Ma and 4–4.5 Ma) from the nearby region indicate mixing between the depleted mantle and an EM II‐like enriched component (e.g. subducted pelagic sediment) in the magma generation. At a given 87Sr/86Sr, Hokkaido BABB have slightly lower 143Nd/144Nd and slightly less radiogenic 206Pb/204Pb compared with associated arc‐type lavas, but both these suites are difficult to distinguish solely on the basis of isotopic compositions. These isotopic data indicate that while generation of the Hokkaido BABB involves smaller amounts of the EM II‐like enriched component than do associated arc lavas, Hokkaido BABB are isotopically distinct from basalts produced at normal back‐arc basin spreading centers. Instead, northeast Hokkaido BABB are more similar to basalts erupted during the initial rifting stage of back‐arc basins. The Monbetsu‐Kamishihoro graben may have developed in association with extension that formed the Kurile Basin, suggesting that opening of the basin continued until late Miocene (7–9 Ma).  相似文献   
44.
Abstract Rb–Sr and Sm–Nd isochron ages were determined for whole rocks and mineral separates of hornblende‐gabbros and related metadiabases and quartz‐diorite from Shodoshima, Awashima and Kajishima islands in the Ryoke plutono‐metamorphic belt of the Setouchi area, Southwest Japan. The Rb–Sr and Sm–Nd whole‐rock‐mineral isochron ages for six samples range from 75 to 110 Ma and 200–220 Ma, respectively. The former ages are comparable with the Rb–Sr whole‐rock isochron ages reported from neighboring Ryoke granitic rocks and are thus due to thermal metamorphism caused by the granitic intrusions. On the contrary, the older ages suggest the time of formation of the gabbroic and related rocks. The initial 87Sr/86Sr and 143Nd/144Nd ratios of the gabbroic rocks (0.7070–0.7078 and 0.51217–0.51231 at 210 Ma, respectively) are comparable with those of neighboring late Cretaceous granites and lower crustal granulite xenoliths from Cenozoic andesites in this region. Because the gabbroic rocks are considered to be fragments of the lower crustal materials interlayered in the granulitic lower crust, their isotopic signature has been inherited from an enriched mantle source or, less likely, acquired through interaction with the lower crustal materials. The Sr and Nd isotopic and petrologic evidence leads to a plausible conclusion that the gabbroic rocks have formed as cumulates from hydrous mafic magmas of light rare earth element‐rich (Sm/Nd < 0.233) and enriched isotopic (?Sr > 0 and ?Nd < 0) signature, which possibly generated around 220–200 Ma by partial melting of an upper mantle. We further conclude that they are fragments of refractory material from the lower crust caught up as xenoblocks by granitic magmas, the latter having been generated by partial melting of granulitic lower crustal material around 100 Ma.  相似文献   
45.
Both historic and currently operational chlorophyll algorithms of the satellite-borne ocean color sensors, such as SeaWiFS, were evaluated for in situ spectral radiation and chlorophyll data in some Case I waters, including the waters in the Indian Ocean sector of the Southern Ocean. Chlorophyll a concentration of the data set (n = 73) ranged from 0.04 to 1.01 mg m–3. The algorithms had higher accuracy for the low- and mid-latitude waters (RMSE: 0.163–0.253), specifically the most recently developed algorithms of OCTS and Sea WiFS showed 0.163 and 0.170 of Root Mean Square Errors, respectively. However, these algorithms had large errors (0.422–0.621) for the Southern Ocean data set and underestimated the surface chlorophyll by more than a factor of 2.6. The absorption coefficients in the blue spectral region retrieved from remote sensing reflectance varied in a nonlinear manner with chlorophyll a concentration, and the value in the Southern Ocean was significantly lower than that in the low- and mid-latitude waters for each chlorophyll a concentration. The underestimation of chlorophyll a concentration in the Southern Ocean with these algorithms was caused by the lower specific absorption coefficient in the region compared with the low- and mid-latitude waters under the same chlorophyll a concentration.  相似文献   
46.
Solidification pressure and crystallization age of the ~5 Ma Shiaidani Granodiorite (Hida Mountain Range, central Japan) are determined based on Al-in-hornblende geobarometry and U–Pb zircon dating. Al-poor patchy replacements developed in amphiboles are common in this granite and petrographic study revealed that the replacements include chloritized biotite and albitic plagioclase. These are probably the hydrothermally recrystallized domains, and should not be used for solidification pressure estimates. Magmatic rim of amphibole is characterized by Si < 7.3 a.p.f.u. (AlIV > 0.7 a.p.f.u.), and utilized in solidification pressure estimate that yielded 0.17–0.29 GPa. The solidification age of the granite is estimated as ~5.6–5.2 Ma using U–Pb zircon dating. From these data, the lower limit of an average denudation rate after ~5.6–5.2 Ma for the area where Shiaidani Granodiorite is exposed is estimated as 0.93–2.5 mm/year.  相似文献   
47.
48.
49.
Summary. Data from Japanese local seismograph networks suggest that the stresses in double seismic zones are in-plate compression for the upper zone and in-plate tension for the lower zone; the stresses do not necessarily appear to be down-dip. It may therefore be possible to identify other double seismic zones on the basis of data which indicate that events with differing orientations of in-plate stresses occur in a given segment of slab.
A global survey of published focal mechanisms for intermediate depth earthquakes suggests that the stress in the slab is controlled, at least in part, by the age of the slab and the rate of convergence. Old and slow slabs are under in-plate tensile stresses and the amount of in-plate compression in the slab increases with increasing convergence rate or decreasing slab age. Young and fast slabs are an exception to this trend; all such slabs are down-dip tensile. Since these slabs all subduct under continents, they may be bent by continental loading. Double seismic zones are not a feature common to all subduction zones and are only observed in slabs which are not dominated by tensile or compressive stresses.
Unbending of the lithosphere and upper mantle phase changes are unlikely to be the causes of the major features of double zones, although they may contribute to producing some of their characteristics. Sagging or thermal effects, possibly aided by asthenospheric relative motion, may produce the local deviatoric stresses that cause double zones.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号