首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   1篇
  国内免费   3篇
大气科学   3篇
地球物理   46篇
地质学   28篇
海洋学   18篇
天文学   19篇
自然地理   7篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2015年   3篇
  2014年   6篇
  2013年   7篇
  2012年   6篇
  2011年   5篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   12篇
  2006年   6篇
  2005年   11篇
  2004年   6篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   5篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1987年   1篇
  1981年   1篇
  1980年   2篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1952年   1篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
11.
Glacial–interglacial variation in the marine Sr/Ca ratio has important implications for coral Sr thermometry [J.W. Beck et al., Science 257 (1992) 644–647]. A possible variation of 1–3% was proposed based on ocean models [H.M. Stoll and D.P. Schrag, Geochim. Cosmochim. Acta 62 (1998) 1107–1118]. Subsequently, studies have used fossil foraminifera to test this prediction [P.A. Martin et al., Geochem. Geophys. Geosyst. 1 (1999); H.M. Stoll et al., Geochim. Cosmochim. Acta 63 (1999) 3535–3547; H. Elderfield et al., Geochem. Geophys. Geosyst. 1 (2000)]. But whether some component of foraminiferal Sr/Ca variation can be uniquely ascribed to seawater Sr variation is still not clear. To address this question, we developed cleaning and analysis techniques and measured Sr/Ca ratios on individual shells of the modern benthic foraminifer Cibicidoides wuellerstorfi. We showed that different size shells have different Sr/Ca ratios; however, samples with shell sizes of 355–500 μm appear to have normally distributed Sr/Ca ratios (1σ=1.8%). For multi-shell measurements (with estimated errors of 0.12–0.39%), the ratio varied by as much as 7.2±0.5% during the last glaciation for two Caribbean records at the same site and by 3.7±0.5% over the past 40,000 yr for one record from the Sierra Leone Rise in the eastern equatorial Atlantic. The two Caribbean records are very similar indicating that the behavior of shell Sr uptake was identical locally and that the shell Sr/Ca ratio faithfully reflects the local environment. The Atlantic record differs from the Caribbean records by as much as several percent. Thus, the foraminiferal Sr/Ca changes cannot be solely due to changes in seawater Sr/Ca unless the glacial deep ocean had spatial variation in Sr/Ca well in excess of the modern ocean. Certain similarities between the three records do exist. Notably, the rate of change of Sr/Ca is similar between 9 and 0 ka (−0.25%/kyr) and between 25 and 16 ka (+0.16%/kyr). This suggests that during these intervals, benthic foraminiferal Sr/Ca was affected by similar large-scale variables. One of these variables may be the average marine Sr/Ca ratio; however, comparison with model predictions [H.M. Stoll and D.P. Schrag, Geochim. Cosmochim. Acta 62 (1998) 1107–1118] suggests other factors must also be considered. The discrepancies between the two sites may be related to the different water mass histories for the Caribbean and eastern Atlantic. Our results suggest that variation of the seawater Sr budget only partially contributed to C. wuellerstorfi Sr/Ca records, while other significant factors still need to be quantified. At present we cannot confidently determine past seawater Sr/Ca variation from our foraminiferal records.  相似文献   
12.
Stochastic methods in hydraulics and hydrology of streamflow are presented. The hydraulics part consists of mechanics of streamflow and sediment transport. A technique presented herein enables one to analyze a limited amount of field data to determine the stochastic structure of irregular stream geometry so that cross-sections and slopes of a stream may be simulated wherever, or as many as, needed. It provides the rational basis of efficient use, interpolation, and extrapolation of field data of irregular stream geometry for any studies to understand and control transport processes in streams. Stochastic modelings of motion of a single sediment particle, either in suspension or on the stream bed, help in understanding the complex mechanism governing sediment transport and, hence, improving techniques for calculating the spatial distribution and transport rate of sediment. For practical applications, however, the technique combining the stochastic and deterministic methods should be most effective.In the hydrology part, Markov and non-Markov models are presented which may be used to simulate streamflow data. Markov models, which dominated stochastic hydrology in the past, have short memories and, therefore, cannot preserve or simulate long-term persistence characterizing physiscal streamflows. Non-Markov models which are currently being developed, and may or may not belong to the Brownian domain, have very long or infinite memories.This paper is dedicated to the idea of coupling the stochastic and deterministic methods in hydraulics and hydrology, so that the two methods may contribute their strengths while complementing each other for their weaknesses.  相似文献   
13.
A mathematical model describing the constant pumping is developed for a partially penetrating well in a heterogeneous aquifer system. The Laplace‐domain solution for the model is derived by applying the Laplace transforms with respect to time and the finite Fourier cosine transforms with respect to vertical co‐ordinates. This solution is used to produce the curves of dimensionless drawdown versus dimensionless time to investigate the influences of the patch zone and well partial penetration on the drawdown distributions. The results show that the dimensionless drawdown depends on the hydraulic properties of the patch and formation zones. The effect of a partially penetrating well on the drawdown with a negative patch zone is larger than that with a positive patch zone. For a single‐zone aquifer case, neglecting the effect of a well radius will give significant error in estimating dimensionless drawdown, especially when dimensionless distance is small. The dimensionless drawdown curves for cases with and without considering the well radius approach the Hantush equation (Advances in Hydroscience. Academic Press: New York, 1964) at large time and/or large distance away from a test well. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
14.
15.
Remediation of heavy-metal-contaminated sediment is often hampered by the availability of heavy metals to the added chemical agents because the heavy metals are often shielded by the sediment matrix. Effective heavy-metal extraction technique becomes an important factor in enhancing the treatment efficiency. A novel extraction/washing technique utilizing chelating agent and elevated pressure in consecutive cycles of compression and decompression has been developed for heavy-metal-contaminated sediment washing in the presence of chelating agent. In this study, the optimal operational conditions of pressure-assisted cyclic washing of Cu-contaminated sediments (initial Cu concentration = 23.177 mg/kg) were determined in a laboratory-scale system. The control factors included applied pressure level, washing time, applied chelant [ethylenediamine-tertraacetic (EDTA)] concentration (0.01–0.5 M), pressure times, and application of consecutive batches washing. Results from the bench-scale study showed that up to 70 % of Cu can be removed from the sediments when 10 atm of pressure was applied for washing. The efficiency dropped to 55 % when the pressure dropped to 6 atm. Under the same operational conditions, the optimal cyclic washing time was 60 min. Results from the particle size analyses indicate that the mean particle size dropped from 100 to 50 μm after the pressure-assisted cyclic washing. Thus, cyclic pressure caused the fracture of sediment aggregates resulting in the exposure of Cu to chelating agents. With the assistance of pressure cyclic system, the total washing time and the amount of added chemical agent used can be significantly reduced.  相似文献   
16.
Regularities exist in fluid flows and can be represented by a set of constants. These constants are functions of the parameter of a probability distribution that exhibits resilience and stability under various flow conditions. Together, these regularities form a network and interact with each other, such that if one is known then the others can be determined from it. The regularities and their network explain the various fluid‐flow phenomena and can be used in analysis of rivers and streams. For example, they can be used as the basis to develop simple and efficient methods of discharge measurements as presented herein, which only require velocity sampling at a single point on a water surface or a few points on a single vertical. Because of their simplicity and the short time requirement, these methods can be easily automated for collecting discharge data in unsteady, high flows that are badly needed for real‐time flow forecasting and design of flood control structures, and for advancing the fundamental, scientific knowledge in hydrology. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
17.
18.
During July and August of 1996, the summer component of the New England shelfbreak front PRIMER experiment was fielded in the Mid-Atlantic Bight, at a site due south of Martha's Vineyard, MA. This study produced acoustic transmission data from a network of moored sources and receivers in conjunction with very-high-resolution oceanography measurements. This paper analyzes receptions at the northeast array receiver from two 400 Hz acoustic tomography sources, with the transmission paths going from the continental slope onto the continental shelf. These data, along with forward acoustic-propagation modeling based on moored oceanographic data, SeaSoar hydrography measurements, and bottom measurements, reveal many new and interesting aspects of acoustic propagation in a complicated slope-shelf environment. For example, one sees that both the shelfbreak front and tidally generated soliton internal wave packets produce stronger mode coupling than previously expected, leading to an interesting time-and-range-variable population of the acoustic normal modes. Additionally, the arrival time wander and the signal spread of acoustic pulses show variability that can be attributed to the presence of a frontal meander and variability in the soliton field. These and other effects are discussed in this paper, with an emphasis on creating a strong connection between the environmental measurements and the acoustic field characteristics.  相似文献   
19.
The spatial and temporal variability of the acoustic field in the region of a strong coastal shelfbreak front are examined, using the high-resolution environmental data from the 1996-1997 New England shelfbreak PRIMER experiment to provide input to acoustic propagation models. Specifically, the "SeaSoar" undulating conductivity-temperature-depth (CTD) probe across-shelf transects provide 1-km along-track resolution, including the front, during the spring, summer, and winter seasons. These data allow one to study the diurnal and seasonal temporal variation of the acoustic field, as well as the varying spatial structure of the field. Using the RAM parabolic equation code, across-shelf acoustic field structure at 200, 400, and 1000 Hz is studied for various source depths. A number of interesting propagation effects are noted, the most interesting of which are the inhibition of strong acoustic-bottom interaction by the warm shelf water beneath the shelfbreak front and the existence of small-scale ducts near the front, due to offshore transport. Data from the vertical line arrays deployed as part of PRIMER offer partial validation of the predictions made. Specifically, it is seen that the mean received levels are in reasonable accord with propagation calculations made using locally measured bottom properties and the SeaSoar water-column measurements.  相似文献   
20.
Weng  Meng-Chia  Lin  Cheng-Han  Shiu  Wen-Jie  Chao  Wei-An  Chiu  Chia-Chi  Lee  Ching-Fang  Huang  Wei-Kai  Yang  Che-Ming 《Landslides》2022,19(3):687-701

Mega-earthquakes and extreme climate events accompanied by intrinsic fragile geology lead to numerous landslides along mountain highways in Taiwan, causing enormous life and economic losses. In this study, a system for rapid slope disaster information integration and assessment is proposed with the aim of providing information on landslide occurrence, failure mechanisms, and subsequent landslide-affected areas to the highway authority rapidly. The functionality of the proposed system is deployed into three units: (1) geohazard rapid report (GeoPORT I), (2) multidisciplinary geological survey report (GeoPORT II), and (3) site-specific landslide simulation report (GeoPORT III). After landslide occurrence, the seismology-based monitoring network rapidly provides the initial slope disaster information, including preliminary location, event magnitude, earthquake activity, and source dynamics, within an hour. Within 3 days of the landslide, a multidisciplinary geological survey is conducted to collect high-precision topographical, geological, and remote-sensing data to determine the possible failure mechanism. After integrating the aforementioned information, a full-scale three-dimensional landslide simulation based on the discrete element method is performed within 10 days to reveal the failure process and to identify the areas potentially affected by subsequent disasters through scenario modeling. Overall, the proposed system can promptly provide comprehensive and objective information to relevant authorities after the event occurrence for hazard assessment. The proposed system was validated using a landslide event in the Central Cross-Island Highway of Taiwan.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号