首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10829篇
  免费   1528篇
  国内免费   71篇
测绘学   262篇
大气科学   814篇
地球物理   3879篇
地质学   4433篇
海洋学   606篇
天文学   1798篇
综合类   33篇
自然地理   603篇
  2023年   33篇
  2022年   51篇
  2021年   168篇
  2020年   215篇
  2019年   315篇
  2018年   522篇
  2017年   578篇
  2016年   738篇
  2015年   640篇
  2014年   730篇
  2013年   961篇
  2012年   705篇
  2011年   685篇
  2010年   639篇
  2009年   612篇
  2008年   530篇
  2007年   394篇
  2006年   357篇
  2005年   333篇
  2004年   312篇
  2003年   285篇
  2002年   248篇
  2001年   234篇
  2000年   213篇
  1999年   117篇
  1998年   109篇
  1997年   130篇
  1996年   81篇
  1995年   101篇
  1994年   97篇
  1993年   60篇
  1992年   47篇
  1991年   68篇
  1990年   82篇
  1989年   45篇
  1988年   35篇
  1987年   69篇
  1986年   46篇
  1985年   53篇
  1984年   59篇
  1983年   57篇
  1982年   58篇
  1981年   57篇
  1980年   38篇
  1979年   37篇
  1978年   36篇
  1977年   38篇
  1975年   33篇
  1974年   29篇
  1973年   33篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
961.
We study tidal synchronization and orbit circularization in a minimal model that takes into account only the essential ingredients of tidal deformation and dissipation in the secondary body. In previous work we introduced the model (Escribano et al. in Phys. Rev. E, 78:036216, 2008); here we investigate in depth the complex dynamics that can arise from this simplest model of tidal synchronization and orbit circularization. We model an extended secondary body of mass m by two point masses of mass m/2 connected with a damped spring. This composite body moves in the gravitational field of a primary of mass Mm located at the origin. In this simplest case oscillation and rotation of the secondary are assumed to take place in the plane of the Keplerian orbit. The gravitational interactions of both point masses with the primary are taken into account, but that between the point masses is neglected. We perform a Taylor expansion on the exact equations of motion to isolate and identify the different effects of tidal interactions. We compare both sets of equations and study the applicability of the approximations, in the presence of chaos. We introduce the resonance function as a resource to identify resonant states. The approximate equations of motion can account for both synchronization into the 1:1 spin-orbit resonance and the circularization of the orbit as the only true asymptotic attractors, together with the existence of relatively long-lived metastable orbits with the secondary in p:q (p and q being co-prime integers) synchronous rotation.  相似文献   
962.
Abstract– We studied the mineralogy, petrology, and bulk, trace element, oxygen, and noble gas isotopic compositions of a composite clast approximately 20 mm in diameter discovered in the Larkman Nunatak (LAR) 04316 aubrite regolith breccia. The clast consists of two lithologies: One is a quench‐textured intergrowth of troilite with spottily zoned metallic Fe,Ni which forms a dendritic or cellular structure. The approximately 30 μm spacings between the Fe,Ni arms yield an estimated cooling rate of this lithology of approximately 25–30 °C s?1. The other is a quench‐textured enstatite‐forsterite‐diopside‐glass vitrophyre lithology. The composition of the clast suggests that it formed at an exceptionally high degree of partial melting, perhaps approaching complete melting, and that the melts from which the composite clast crystallized were quenched from a temperature of approximately 1380–1400 °C at a rate of approximately 25–30 °C s?1. The association of the two lithologies in a composite clast allows, for the first time, an estimation of the cooling rate of a silicate vitrophyre in an aubrite of approximately 25–30 °C s?1. While we cannot completely rule out an impact origin of the clast, we present what we consider is very strong evidence that this composite clast is one of the elusive pyroclasts produced during pyroclastic volcanism on the aubrite parent body ( Wilson and Keil 1991 ). We further suggest that this clast was not ejected into space but retained on the aubrite parent body by virtue of the relatively large size of the clast of approximately 20 mm. Our modeling, taking into account the size of the clast, suggests that the aubrite parent body must have been between approximately 40 and 100 km in diameter, and that the melt from which the clast crystallized must have contained an estimated maximum range of allowed volatile mass fractions between approximately 500 and approximately 4500 ppm.  相似文献   
963.
Abstract– Six large iron meteorites have been discovered in the Meridiani Planum region of Mars by the Mars Exploration Rover Opportunity in a nearly 25 km‐long traverse. Herein, we review and synthesize the available data to propose that the discovery and characteristics of the six meteorites could be explained as the result of their impact into a soft and wet surface, sometime during the Noachian or the Hesperian, subsequently to be exposed at the Martian surface through differential erosion. As recorded by its sediments and chemical deposits, Meridiani has been interpreted to have undergone a watery past, including a shallow sea, a playa, an environment of fluctuating ground water, and/or an icy landscape. Meteorites could have been encased upon impact and/or subsequently buried, and kept underground for a long time, shielded from the atmosphere. The meteorites apparently underwent significant chemical weathering due to aqueous alteration, as indicated by cavernous features that suggest differential acidic corrosion removing less resistant material and softer inclusions. During the Amazonian, the almost complete disappearance of surface water and desiccation of the landscape, followed by induration of the sediments and subsequent differential erosion and degradation of Meridiani sediments, including at least 10–80 m of deflation in the last 3–3.5 Gy, would have exposed the buried meteorites. We conclude that the iron meteorites support the hypothesis that Mars once had a denser atmosphere and considerable amounts of water and/or water ice at and/or near the surface.  相似文献   
964.
Neutron stars are the densest objects known in the Universe. Being the final product of stellar evolution, their internal composition and structure is rather poorly constrained by measurements.  相似文献   
965.
Cosmic rays registered by Neutron Monitor on the surface of the Earth are believed to originate from outer space, and sometimes also from the exotic objects of the Sun. Whilst the intensities of the cosmic rays are observed to be enhanced with sudden, sharp and short-lived increases, they are termed as ground level enhancements (GLEs). They are the occurrences in solar cosmic ray intensity variations on short-term basis, so different solar factors erupted from the Sun can be responsible for causing them. In this context, an attempt has been made to determine quantitative relationships of the GLEs having peak increase >5% with simultaneous solar, interplanetary and geophysical factors from 1997 through 2006, thereby searching the responsible factors which seem to cause the enhancements. Results suggest that GLE peaks might be caused by solar energetic particle fluxes and solar flares. The proton fluxes which seemed to cause GLE peaks were also supported by their corresponding fluences. For most of the flares, the time integrated rising portion of the flare emission refers to the strong portion of X-ray fluxes which might be the concern to GLE peak. On an average, GLE peak associated X-ray flux (0.71×10−4 w/m2) is much stronger than GLE background associated X-ray flux (0.11×10−6 w/m2). It gives a general consent that the GLE peak is presumably caused by the solar flare. Coronal mass ejection alone does not seem to cause GLE. Coronal mass ejection presumably causes geomagnetic disturbances characterized by geomagnetic indices and polarities of interplanetary magnetic fields.  相似文献   
966.
Sensitive spectral observations made in two frequency bands near 6.0 and 17.6 GHz are described for Orion and W51. Using frequency switching we were able to achieve a dynamic range in excess of 10,000 without fitting sinusoidal or polynomial baselines. This enabled us to detect lines as weak as T A ∼1 mK in these strong continuum sources. Hydrogen recombination lines with Δn as high as 25 have been detected in Orion. In the Orion data, where the lines are stronger, we have also detected a systematic shift in the line center frequencies proportional to linewidth that cannot be explained by normal optical depth effects.  相似文献   
967.
We present and interpret observations of two morphologically homologous flares that occurred in active region (AR) NOAA 10501 on 20 November 2003. Both flares displayed four homologous Hα ribbons and were both accompanied by coronal mass ejections (CMEs). The central flare ribbons were located at the site of an emerging bipole in the centre of the active region. The negative polarity of this bipole fragmented in two main pieces, one rotating around the positive polarity by ≈ 110° within 32 hours. We model the coronal magnetic field and compute its topology, using as boundary condition the magnetogram closest in time to each flare. In particular, we calculate the location of quasi-separatrix layers (QSLs) in order to understand the connectivity between the flare ribbons. Though several polarities were present in AR 10501, the global magnetic field topology corresponds to a quadrupolar magnetic field distribution without magnetic null points. For both flares, the photospheric traces of QSLs are similar and match well the locations of the four Hα ribbons. This globally unchanged topology and the continuous shearing by the rotating bipole are two key factors responsible for the flare homology. However, our analyses also indicate that different magnetic connectivity domains of the quadrupolar configuration become unstable during each flare, so that magnetic reconnection proceeds differently in both events.  相似文献   
968.
An experiment was conducted in conjunction with the total solar eclipse on 29 March 2006 in Libya to measure both the electron temperature and its flow speed simultaneously at multiple locations in the low solar corona by measuring the visible K-coronal spectrum. Coronal model spectra incorporating the effects of electron temperature and its flow speed were matched with the measured K-coronal spectra to interpret the observations. Results show electron temperatures of (1.10±0.05) MK, (0.70±0.08) MK, and (0.98±0.12) MK, at 1.1 R from Sun center in the solar north, east and west, respectively, and (0.93±0.12) MK, at 1.2 R from Sun center in the solar west. The corresponding outflow speeds obtained from the spectral fit are (103±92) km s−1, (0+10) km s−1, (0+10) km s−1, and (0+10) km s−1. Since the observations were taken only at 1.1 R and 1.2 R from Sun center, these speeds, consistent with zero outflow, are in agreement with expectations and provide additional confirmation that the spectral fitting method is working. The electron temperature at 1.1 R from Sun center is larger at the north (polar region) than the east and west (equatorial region).  相似文献   
969.
The activity minimum between the end of cycle 23 and the beginning of cycle 24 was the longest and deepest since at least the beginning of the 20th century. This has led to speculation that the Sun is changing its behaviour. The sunspot number and 10.7-cm solar radio flux indices have traditionally been highly correlated, so a change in the relationship between them might flag at such a change. An examination of this relationship suggests a significant change in the relationship between activity in the photosphere and in the chromosphere/corona happened soon after the maximum of cycle 23 and has continued into cycle 24. However, there are indications of change as early as 1980.  相似文献   
970.
Abstract– We have developed new sample preparation and analytical techniques tailored for entire aerogel tracks of Wild 2 sample analyses both on “carrot” and “bulbous” tracks. We have successfully ultramicrotomed an entire track along its axis while preserving its original shape. This innovation allowed us to examine the distribution of fragments along the entire track from the entrance hole all the way to the terminal particle. The crystalline silicates we measured have Mg‐rich compositions and O isotopic compositions in the range of meteoritic materials, implying that they originated in the inner solar system. The terminal particle of the carrot track is a 16O‐rich forsteritic grain that may have formed in a similar environment as Ca‐, Al‐rich inclusions and amoeboid olivine aggregates in primitive carbonaceous chondrites. The track also contains submicron‐sized diamond grains likely formed in the solar system. Complex aromatic hydrocarbons distributed along aerogel tracks and in terminal particles. These organics are likely cometary but affected by shock heating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号