首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   24篇
  国内免费   5篇
测绘学   5篇
大气科学   19篇
地球物理   64篇
地质学   99篇
海洋学   18篇
天文学   30篇
自然地理   36篇
  2023年   3篇
  2022年   2篇
  2021年   3篇
  2020年   20篇
  2019年   11篇
  2018年   16篇
  2017年   18篇
  2016年   15篇
  2015年   14篇
  2014年   17篇
  2013年   16篇
  2012年   17篇
  2011年   21篇
  2010年   16篇
  2009年   17篇
  2008年   9篇
  2007年   12篇
  2006年   7篇
  2005年   6篇
  2004年   11篇
  2003年   6篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1985年   1篇
排序方式: 共有271条查询结果,搜索用时 15 毫秒
81.
Chromophoric dissolved organic matter (CDOM) spectral absorption, dissolved organic carbon (DOC) concentration, and the particulate fraction of inorganic (PIM) and organic matter (POM) were measured in Louisiana coastal waters at Vermilion, Atchafalaya, Terrebonne, Barataria, and Mississippi River locations, in 2007-2008. The range of CDOM was 0.092 m−1 at Barataria in June 2008 to 11.225 m−1 at Mississippi in February 2008. An indicator of organic matter quality was predicted by the spectral slope of absorption coefficients from 350 to 412 nm which was between 0.0087 m−1 at Mississippi in May 2008 and 0.0261 m−1 at Barataria in June 2008. CDOM was the dominant component of light attenuation at Terrebonne and Barataria. Detritus and CDOM were the primary components of light attenuation at Vermilion, Atchafalaya, and Mississippi. DOC ranged between 65 and 1235 μM. PIM ranged between 1.1 and 426.3 mg L−1 and POM was between 0.3 and 49.6 mg L−1.  相似文献   
82.
The Wind River Range (WRR) of Wyoming has the largest concentration of alpine glaciers in the American Rockies and contributes to several major river systems in the western United States. Declines in the areal extent and volume of these glaciers are well documented, and eventual loss of alpine glaciers will reduce the amount of water available for agricultural and domestic use. The contribution of glacial melt to streamflow remains largely unquantified in Wyoming. We used isotope measurements and Bayesian modeling to estimate the fractional contribution of glacier meltwater to Dinwoody Creek (DC) in the WRR on bi‐weekly and seasonal (spring, summer, and fall) time scales over 2 years. In 2007 and 2008, we made temporally intensive measurements of the stable isotope composition of water from the DC watershed. Samples of the primary sources of streamflow (snowmelt, glacier melt, rain, and baseflow) were collected during field campaigns, and automated collection of stream samples occurred over the melt season. Isotope data (D and 18O) were analyzed within a hierarchical Bayesian framework that incorporated temporal and spatial correlations. Glacial melt contributed a significant proportion (~53–59%) to streamflow in a low‐flow year (2007) or when streamflow was low during a high‐flow year (2008). In 2008, a large and persistent snowpack contributed significantly (~0·42–51%) to streamflow in mid‐summer. The large contribution of glacial melt to streamflow suggests that the loss of glaciers may impact riparian ecosystems and human water supplies in the late summer and in years with low snowpack. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
83.
Climate Dynamics - North Africa experienced a severe heatwave in April 2010 with daily maximum temperatures ( $$T_{max}$$ ) frequently exceeding $$40\,^{\circ }\mathrm{C}$$ and daily minimum...  相似文献   
84.
This study diagnoses the climate sensitivity, radiative forcing and climate feedback estimates from eleven general circulation models participating in the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5), and analyzes inter-model differences. This is done by taking into account the fact that the climate response to increased carbon dioxide (CO2) is not necessarily only mediated by surface temperature changes, but can also result from fast land warming and tropospheric adjustments to the CO2 radiative forcing. By considering tropospheric adjustments to CO2 as part of the forcing rather than as feedbacks, and by using the radiative kernels approach, we decompose climate sensitivity estimates in terms of feedbacks and adjustments associated with water vapor, temperature lapse rate, surface albedo and clouds. Cloud adjustment to CO2 is, with one exception, generally positive, and is associated with a reduced strength of the cloud feedback; the multi-model mean cloud feedback is about 33 % weaker. Non-cloud adjustments associated with temperature, water vapor and albedo seem, however, to be better understood as responses to land surface warming. Separating out the tropospheric adjustments does not significantly affect the spread in climate sensitivity estimates, which primarily results from differing climate feedbacks. About 70 % of the spread stems from the cloud feedback, which remains the major source of inter-model spread in climate sensitivity, with a large contribution from the tropics. Differences in tropical cloud feedbacks between low-sensitivity and high-sensitivity models occur over a large range of dynamical regimes, but primarily arise from the regimes associated with a predominance of shallow cumulus and stratocumulus clouds. The combined water vapor plus lapse rate feedback also contributes to the spread of climate sensitivity estimates, with inter-model differences arising primarily from the relative humidity responses throughout the troposphere. Finally, this study points to a substantial role of nonlinearities in the calculation of adjustments and feedbacks for the interpretation of inter-model spread in climate sensitivity estimates. We show that in climate model simulations with large forcing (e.g., 4 × CO2), nonlinearities cannot be assumed minor nor neglected. Having said that, most results presented here are consistent with a number of previous feedback studies, despite the very different nature of the methodologies and all the uncertainties associated with them.  相似文献   
85.

In a typical winter season, approximately 471,000 tons of road salt are deposited along roadways in Illinois, USA. An estimated 45% of the deposited road salt will infiltrate through the soils and into shallow aquifers. Transported through shallow aquifers, chloride associated with the road salts has the potential to reside within groundwater for years based on the pathway, the geologic material, and the recharge rate of the aquifer system. Utilizing MODFLOW and MT3D, simulations employing various road-salt application rates were conducted to assess the net accumulation of chloride and the residence times of chloride in an agriculture-dominated watershed that originates in an urban area. A positive-linear relationship was observed between the application rate of chloride and both the maximum chloride concentration and total mass accumulated within the watershed. Simulated annual recharge rates along impacted surfaces ranged from 1,000 to 10,000 mg/L. After 60 years of application, simulated chloride concentrations in groundwater ranged from 197 to 1,900 mg/L. For all application rates, chloride concentrations within the groundwater rose at an annual rate of >3 mg/L. While concentrations increase throughout the system, the majority of chloride accumulation occurs near the roads and the urban areas. Model simulations reveal a positive relationship between application rate and residence time of chloride (1,123–1,288 days based on application rate). The models indicate that continued accumulation of chloride in shallow aquifers can be expected, and methods that apply less chloride effectively need to be examined.

  相似文献   
86.
Tools for assessing and communicating salt marsh condition are essential to guide decisions aimed at maintaining or restoring ecosystem integrity and services. Multimetric indices (MMIs) are increasingly used to provide integrated assessments of ecosystem condition. We employed a theory-based approach that considers the multivariate relationship of metrics with human disturbance to construct a salt marsh MMI for five National Parks in the northeastern USA. We quantified the degree of human disturbance for each marsh using the first principal component score from a principal components analysis of physical, chemical, and land use stressors. We then applied a metric selection algorithm to different combinations of about 45 vegetation and nekton metrics (e.g., species abundance, species richness, and ecological and functional classifications) derived from multi-year monitoring data. While MMIs derived from nekton or vegetation metrics alone were strongly correlated with human disturbance (r values from ?0.80 to ?0.93), an MMI derived from both vegetation and nekton metrics yielded an exceptionally strong correlation with disturbance (r = ?0.96). Individual MMIs included from one to five metrics. The metric-assembly algorithm yielded parsimonious MMIs that exhibit the greatest possible correlations with disturbance in a way that is objective, efficient, and reproducible.  相似文献   
87.
88.
The oxygen isotope compositions of eclogite and amphibolite garnets from Franciscan Complex high-grade blocks and actinolite rinds encasing the blocks were determined to place constraints on their fluid histories. SIMS oxygen isotope analysis of single garnets from five eclogite blocks from three localities (Ring Mountain, Mount Hamilton, and Jenner Beach) shows an abrupt decrease in the δ18O value by ~1–3 ‰ from core to rim at a distance of ~120 ± 50 μm from the rim in nine out of the 12 garnets analyzed. In contrast, amphibolite garnets from one block (Ring Mountain) analyzed show a gradual increase in δ18O value from core to rim, implying a different history from that of the eclogite blocks. Values of δ18O in eclogite garnet cores range from 5.7 to 11.6 ‰, preserving the composition of the eclogite protolith. The abrupt decrease in the δ18O values of the garnet rims to values ranging from 3.2 to 11.2 ‰ suggests interaction with a lower δ18O fluid during the final stages of growth during eclogite facies metamorphism (450–600 °C). We hypothesize that this fluid is sourced from the serpentinized mantle wedge. High Mg, Ni, and Cr contents of actinolite rinds encasing the blocks also support interaction with ultramafic rock. Oxygen isotope thermometry using chlorite and phengite versus actinolite of rinds suggests temperatures of 185–240 °C at Ring Mountain and Mount Hamilton. Rind formation temperatures together with the lower δ18O garnet rims suggest that the blocks were in contact with ultramafic rock from the end of garnet growth through low-temperature retrogression. We suggest a tectonic model in which oceanic crust is subducted at the initiation of subduction and becomes embedded in the overlying mantle wedge. As subduction continues, metasomatic exchange between high-grade blocks and surrounding ultramafic rock is recorded in low δ18O garnet rims, and later as temperatures decrease, with rind formation.  相似文献   
89.
Dansgaard–Oeschger (D–O) cycles had far-reaching effects on Northern Hemisphere and tropical climate systems during the last glacial period, yet the climatic response to D–O cycles in western North America is controversial, especially prior to 55 ka. We document changes in precipitation along the western slope of the central Sierra Nevada during early Marine Oxygen Isotope Stages (MIS) 3 and 4 (55–67 ka) from a U-series dated speleothem record from McLean's Cave. The timing of our multi-proxy geochemical dataset is coeval with D–O interstadials (15–18) and stadials, including Heinrich Event 6. The McLean's Cave stalagmite indicates warmer and drier conditions during Greenland interstadials (GISs 15–18), signified by elevated δ18O, δ13C, reflectance, and trace element concentrations, and less radiogenic 87Sr/86Sr. Our record extends evidence of a strong linkage between high-latitude warming and reduced precipitation in western North America to early MIS 3 and MIS 4. This record shows that the linkage persists in diverse global climate states, and documents the nature of the climatic response in central California to Heinrich Event 6.  相似文献   
90.
The site of Mwanganda's Village, located along a paleochannel in northern Malawi, is one of only a few sites that have characterized the Middle Stone Age (MSA) of Malawi for decades (Clark & Haynes, 1970 ; Clark et al., 1970 ; Kaufulu, 1990 ). The Malawi Earlier‐Middle Stone Age Project has re‐examined the site using new mapping and chronometric tools in order to reinterpret the site's significance within the context of current debates surrounding human origins and the potential role the environment played in shaping human behavior. The new data do not support the previous hypothesis that the site was an elephant butchery location (contra Clark & Haynes, 1970 ; Clark et al., 1970 ; Kaufulu, 1990 ). Instead, the evidence shows successive colonization of riparian corridors by MSA hunter‐gatherers focused on exploiting localized resources during periods of generally humid climates while other lakes desiccated across Africa. We challenge the hypothesis that stable and intermediately high lake levels within the African Rift Valley System (sensu Trauth et al., 2010 ) catalyzed the evolution of regional interaction networks between 42 and 22 ka. Instead, we interpret the evidence to suggest that regional variants of technology persist into the late MSA as foragers focused on exploiting resources from local catchments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号