首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   499篇
  免费   21篇
  国内免费   3篇
测绘学   11篇
大气科学   43篇
地球物理   126篇
地质学   141篇
海洋学   34篇
天文学   123篇
综合类   2篇
自然地理   43篇
  2022年   4篇
  2021年   5篇
  2020年   9篇
  2019年   3篇
  2018年   5篇
  2017年   15篇
  2016年   11篇
  2015年   12篇
  2014年   19篇
  2013年   18篇
  2012年   22篇
  2011年   20篇
  2010年   18篇
  2009年   43篇
  2008年   21篇
  2007年   21篇
  2006年   23篇
  2005年   16篇
  2004年   16篇
  2003年   17篇
  2002年   10篇
  2001年   14篇
  2000年   7篇
  1999年   7篇
  1998年   6篇
  1997年   5篇
  1996年   8篇
  1995年   9篇
  1993年   5篇
  1992年   2篇
  1991年   3篇
  1990年   5篇
  1988年   7篇
  1987年   6篇
  1986年   7篇
  1985年   6篇
  1984年   8篇
  1983年   12篇
  1982年   3篇
  1981年   10篇
  1980年   9篇
  1979年   8篇
  1978年   8篇
  1977年   6篇
  1976年   4篇
  1975年   8篇
  1974年   4篇
  1973年   5篇
  1971年   2篇
  1970年   2篇
排序方式: 共有523条查询结果,搜索用时 609 毫秒
501.
The US Army ERDC CRREL and the US Department of Agriculture Natural Resources Conservation Service developed a square electronic snow water equivalent (e‐SWE) sensor as an alternative to using fluid‐filled snow pillows to measure SWE. The sensors consist of a centre panel to measure SWE and eight outer panels to buffer edge stress concentrations. Seven 3 m square e‐SWE sensors were installed in five different climate zones. During the 2011–2012 winter, 1.8 and 1.2 m square e‐SWE sensors were installed and operated in Oregon. With the exception of New York State and Newfoundland, the e‐SWE sensors accurately measured SWE, with R2 values between the sensor and manual SWE measurements of between 0.86 and 0.98. The e‐SWE sensor at Hogg Pass, Oregon, accurately measured SWE during the past 8 years of operations. In the thin, icy snow of New York during midwinter 2008–2009, the e‐SWE sensors overmeasured SWE because of edge stress concentrations associated with strong icy layers and a shallow snow cover. The New York e‐SWE sensors' measurement accuracy improved in spring 2009 and further improved during the 2011–2012 winter with operating experience. At Santiam Junction, measured SWE from the 1.8 and 1.2 m square e‐SWE sensors agreed well with the snow pillow, 3 m square e‐SWE sensor, and manual SWE measurements until February 2013, when dust and gravel blew onto the testing area resulting in anomalous measurements. © 2014 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   
502.
A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.  相似文献   
503.
The European Union’s Integrated Maritime Policy is intended in part to co-ordinate sectoral policies, to achieve joined-up thinking and action and overcome the inconsistency between policy approaches that has led to the degradation of European seas. An integrated governance would be relatively straight-forward if the different interests and actors were operating on the basis of shared values, but they are not. While the fisheries sector, whether large or small-scale, is driven by a commercial imperative which tends towards the greatest extraction of the resource possible, environmentalists would champion the removal of all human impacts, other than redress activity, as the optimum state for the ecosystem. However, the greatest impediment to an integrated approach is the failure to subject the EU’s Common Fisheries Policy to the objectives of the Integrated Maritime Policy. Instead, all decisions concerning fisheries will continue to be made in accordance with the Fisheries Regulation which demands exploitation of the fragile resource. Attention needs to be given to how EU fisheries policy is to acquire values beyond that of commercial extraction for immediate economic benefit so that it may cohere with objectives of the Integrated Maritime Policy and aid the regeneration of the seas.  相似文献   
504.
One ‘2020 vision’ for fluvial geomorphology is that it sits alongside stream ecology and hydraulic engineering as a key element of an integrated, interdisciplinary river science. A challenge to this vision is that scientists from these three communities may approach problems from different perspectives with different questions and have different methodological outlooks. Refining interdisciplinary methodology is important in this context, but raises a number of issues for geomorphologists, ecologists and engineers alike. In particular, we believe that it is important that there is greater dialogue about the nature of mutually‐valued questions and the adoption of mutually‐acceptable methods. As a contribution to this dialogue we examine the benefits and challenges of using physical experimentation in flume laboratories to ask interdisciplinary questions. Working in this arena presents the same challenges that experimental geomorphologists and engineers are familiar with (scaling up results, technical difficulties, realism) and some new ones including recognizing the importance of biological processes, identifying hydraulically meaningful biological groups, accommodating the singular behaviour of individuals and species, understanding biological as well as physical stimuli, and the husbandry and welfare of live organisms. These issues are illustrated using two examples from flume experiments designed (1) to understand how the movement behaviours of aquatic insects through the near‐bed flow field of gravelly river beds may allow them to survive flood events, and (2) how an understanding of the way in which fish behaviours and swimming capability are affected by flow conditions around artificial structures can lead to the design of effective fish passages. In each case, an interdisciplinary approach has been of substantial mutual benefit and led to greater insights than discipline‐specific work would have produced. Looking forward to 2020, several key challenges for experimentalists working on the interface of fluvial geomorphology, stream ecology and hydraulic engineering are identified. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
505.
An event‐based model is used to investigate the impact of the spatial distribution of imperviousness on the hydrologic response of a basin characterized by an urban land use. The impact of the spatial distribution of imperviousness is investigated by accounting for its location within the basin when estimating the generated runoff and the hydrologic response. The event model accounts for infiltration and saturation excess; the excess runoff is routed to the outlet using a geomorphologic unit hydrograph. To represent the spatial distribution of rainfall and imperviousness, radar and remotely derived data are used, respectively. To estimate model parameters and analyse their behaviour, a split sample test and parameter sensitivity analysis are performed. From the analysis of parameters, we found the impervious cover tends to increase the sensitivity and storm dependency of channel routing parameters. The calibrated event model is used to investigate the impact of the imperviousness gradient by estimating and comparing hydrographs at internal locations in the basin. From this comparison, we found the urban land use and the spatial variability of rainfall can produce bigger increases in the peak flows of less impervious areas than the most urbanized ones in the basin. To examine the impacts of the imperviousness pattern, scenarios typifying extreme cases of sprawl type and clustered development are used while accounting for the uncertainty in parameters and the initial condition. These scenarios show that the imperviousness pattern can produce significant changes in the response at the main outlet and at locations internal to the overall watershed. Overall, the results indicate the imperviousness pattern can be an influential factor in shaping the hydrologic response of an urbanizing basin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
506.
Retrievals performed on Cassini Composite Infrared Spectrometer data obtained during the distant Jupiter flyby in 2000/2001 have been used to generate global temperature maps of the planet in the troposphere and stratosphere, but to higher latitudes than were shown previously by Flasar et al. [Flasar, F.M., 39 colleagues, 2004a. Nature 427, 132-135; Flasar, F.M., 44 colleagues, 2004b. Space Sci. Rev. 115, 169-297]. Similar retrievals were performed on Voyager 1 IRIS data to provide the first detailed IRIS map of the stratosphere, and high latitudes in the troposphere. Thermal winds were calculated for each data set and show strong vertical shears in the zonal winds at low latitudes, and meridional temperature gradients indicate the presence of circumpolar jets, as well. The temperatures retrieved from the two spacecraft were also compared with yearly ground-based data obtained over the intervening two decades. Tropospheric temperatures reveal gradual changes at low latitudes, with little obvious seasonal or short-term variation [Orton et al., 1994. Science 265, 625-631]. Stratospheric temperatures show much more complicated behavior over short timescales, consistent with quasi-quadrennial oscillations at low latitudes, as suggested in prior analyses of shorter intervals of ground-based data [Orton et al., 1991. Science 252, 537-542; Friedson, A.J., 1999. Icarus 137, 34-55]. A scaling analysis indicates that meridional motions, mechanically forced by wave or eddy convergence, play an important role in modulating the temperatures and winds in the upper troposphere and stratosphere on seasonal and shorter timescales. At latitudes away from the equator, the mechanical forcing can be derived simply from a temporal record of temperature and its vertical derivative. Ground-based observations with improved vertical resolution and/or long-term monitoring from spacecraft are required for this purpose, though the Voyager and Cassini data given indications that the magnitude of the forcing is very small.  相似文献   
507.
508.
In the five years from June, 1967, to June, 1972, a total of 99 meteorites were found in Roosevelt County, New Mexico and in adjoining Curry County. Of this number, 74 were found by one man. The finds include two achondrites, one pallasite, one carbonaceous chondrite, and 95 chondrites. They appear to represent more than 50 separate meteorite falls. The finding of a large number of meteorites in a small area provides data for an estimate of the probable quantity and average size of the meteorite specimens reaching the earth. The problems involved in allocating a total of 17 available local place names among more than 50 meteorite falls are discussed.  相似文献   
509.
Infrared spectra of Jupiter's atmosphere were obtained with the infrared spectrometer (IRS) on the 1.5-m telescope at the Cerro Tololo Inter-American Observatory (CTIO) during the first 2 days of the impacts of the fragments of Comet Shoemaker–Levy 9 (1993e). We monitored 3.51 ± 0.17 μm radiation from the impact areas, undisturbed areas, and auroral regions of Jupiter after the A and E impacts. The strong emission of a portion of the P-branch of the ν3band of CH4was detected on the A impact area 4 hr after the impact. H+3emissions are found to be decreased at the A and E impact sites after 4 hr and 10 hr 50 min of the impacts, respectively, compared with undisturbed areas at the same latitude. The temperatures of the southern H+3aurora were normal within the first several hours following the A and E impacts.  相似文献   
510.
We measured major, minor, and trace-element compositions for eleven Al-rich chondrules from unequilibrated ordinary chondrites to investigate the relationships between Al-rich chondrules, ferromagnesian chondrules, Ca-, Al-rich inclusions (CAIs), and amoeboid olivine aggregates (AOAs). Phase equilibrium considerations show that, for the most part, mineral assemblages in Al-rich chondrules are those expected from melts of the observed compositions. The diversity of mineral assemblages and Al-rich chondrule types arises mainly from the fact that the array of compositions spans both the spinel-saturated anorthite-forsterite reaction curve and a thermal divide defined by where the anorthite-forsterite join crosses the reaction curve. The reaction curve accounts for the two principal varieties of Al-rich chondrule, plagioclase-phyric and olivine-phyric, with or without aluminous spinel. The thermal divide influences the subsequent evolution of each variety. A third variety of Al-rich chondrule contains abundant sodium-rich glass; trace-element fractionation patterns suggest that these glassy Al-rich chondrules could have been derived from the other two by extensive alteration of plagioclase to nepheline followed by remelting. The bulk compositions of Al-rich chondrules (except sodium-rich ones) are intermediate in a volatility sense between ferromagnesian chondrules and type C CAIs. The combined trend of bulk compositions for CAIs, Al-rich chondrules, and ferromagnesian chondrules mirrors, but does not exactly match, the trend predicted from equilibrium condensation at PT ∼ 10-3 atm; the observed trend does not match the trend found for evaporation from a liquid of chondritic composition. We thus infer that the bulk compositions of the precursors to CAIs, Al-rich chondrules, were ferromagnesian chondrules were controlled primarily by vapor-solid reactions (condensation or sublimation) in the solar nebula. Some Al-rich chondrules are consistent with an origin by melting of a compound CAI-ferromagnesian chondrule hybrid; others cannot be so explained. Any hybrid model is restricted by the constraint that the CAI precursor consisted dominantly of pyroxene + plagioclase + spinel; melilite cannot have been a significant component. Amoeboid olivine aggregates also have the inferred mineralogical characteristics of Al-rich chondrule precursors—they are mixtures of olivine with plagioclase-spinel-pyroxene-rich CAIs—but the few measured bulk compositions are more olivine-rich than those of Al-rich chondrules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号