首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1151篇
  免费   27篇
  国内免费   8篇
测绘学   65篇
大气科学   108篇
地球物理   265篇
地质学   387篇
海洋学   58篇
天文学   220篇
综合类   7篇
自然地理   76篇
  2021年   10篇
  2020年   18篇
  2019年   16篇
  2018年   29篇
  2017年   39篇
  2016年   38篇
  2015年   28篇
  2014年   37篇
  2013年   53篇
  2012年   49篇
  2011年   67篇
  2010年   50篇
  2009年   72篇
  2008年   43篇
  2007年   46篇
  2006年   33篇
  2005年   36篇
  2004年   23篇
  2003年   30篇
  2002年   35篇
  2001年   19篇
  2000年   10篇
  1999年   19篇
  1998年   15篇
  1997年   22篇
  1996年   19篇
  1995年   20篇
  1994年   10篇
  1993年   15篇
  1992年   21篇
  1991年   7篇
  1990年   15篇
  1989年   14篇
  1988年   10篇
  1987年   13篇
  1986年   11篇
  1985年   13篇
  1984年   10篇
  1982年   14篇
  1981年   13篇
  1980年   9篇
  1979年   9篇
  1978年   8篇
  1977年   8篇
  1976年   13篇
  1974年   8篇
  1972年   5篇
  1971年   10篇
  1970年   5篇
  1969年   5篇
排序方式: 共有1186条查询结果,搜索用时 31 毫秒
101.
102.
The last products of the pleistocene Laach volcano (Eifel, about 40 kms SW of Bonn, Germany) are grey tuffs. Outcrops in the rim show characteristic cross-bedding in these tuffs. It is in discussion whether these structures are produced by wind or by phreato-magmatic outbursts. At all larger outcrops in the rim we measured numerous depositional elements of the tuffs, and analyzed their geometrical structure. So we are able to reconstruct shape, structure and orientation of dunes in the tuffs. They show transport vectors in centrifugal orientation, radially to the vent. The dunes are orientated concentrically to the vent, we intruduce the term “concentrical dune” for this dune type. This points out that the dunes in the Laach tuffs are of volcanic origin. But our geometrical results give no authorization to assume phreato-magmatic processes during the activity of the Laach volcano. We think that the grey Laach tuffs are no base surge deposits, but products of gas-rich eruptions in the phase of decreasing volcanic energy.  相似文献   
103.
The headwaters of mountainous, discontinuous permafrost regions in north‐eastern Mongolia are important water resources for the semi‐arid country, but little is known about hydrological processes there. Run‐off generation on south‐facing slopes, which are devoid of permafrost, has so far been neglected and is totally unknown for areas that have been affected by recent forest fires. To fill this knowledge gap, the present study applied artificial tracers on a steppe‐vegetated south‐facing and on two north‐facing slopes, burned and unburned. Combined sprinkling and dye tracer experiments were used to visualize processes of infiltration and water fluxes in the unsaturated zone. On the unburned north‐facing slope, rapid and widespread infiltration through a wet organic layer was observed down to the permafrost. On the burned profile, rapid infiltration occurred through a combusted organic and underlying mineral layer. Stained water seeped out at the bottom of both profiles suggesting a general tendency to subsurface stormflow (SSF). Ongoing SSF could directly be studied 24 h after a high‐intensity rainfall event on a 55‐m hillslope section in the burned forest. Measurements of water temperature proved the role of the permafrost layer as a base horizon for SSF. Repeated tracer injections allowed direct insights into SSF dynamics: A first injection suggested rather slow dispersive subsurface flow paths; whereas 18 h later, a second injection traced a more preferential flow system with 20 times quicker flow velocities. We speculate that these pronounced SSF dynamics are limited to burned slopes where a thermally insulating organic layer is absent. On three south‐facing soil profiles, the applied tracer remained in the uppermost 5 cm of a silt‐rich mineral soil horizon. No signs of preferential infiltration could be found, which suggested reduced biological activity under a harsh, dry and cold climate. Instead, direct observations, distributed tracers and charcoal samples provided evidence for the occurrence of overland flow. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
104.
In a previous paper (Chassefière et al. 2013 ), we have shown that most volcanic sulfur released to the early Mars atmosphere could have been trapped in the upper cryosphere under the form of CO2‐SO2 clathrates. Huge amounts of sulfur, up to the equivalent of an ~1 bar atmosphere of SO2, would have been stored in the Noachian upper cryosphere, then massively released to the atmosphere during the Hesperian due to rapidly decreasing CO2 pressure. It could have resulted in the formation of the large sulfate deposits observed mainly in Hesperian terrains, whereas no or little sulfates are found at the Noachian. In the present paper, we first clarify some aspects of our previous work. We discuss the possibility of a smaller cooling effect of sulfur particles, or even of a net warming effect. We point out the fact that CO2‐SO2 clathrates formed through a progressive enrichment of a pre‐existing reservoir of CO2 clathrates and discuss processes potentially involved in the slow formation of a SO2‐rich upper cryosphere. We show that episodes of sudden destabilization at the Hesperian may generate 1000 ppmv of SO2 in the atmosphere and contribute to maintaining the surface temperature above the water freezing point.  相似文献   
105.
Abstract– The Opportunity rover of the Mars Exploration Rover mission encountered an isolated rock fragment with textural, mineralogical, and chemical properties similar to basaltic shergottites. This finding was confirmed by all rover instruments, and a comprehensive study of these results is reported here. Spectra from the miniature thermal emission spectrometer and the Panoramic Camera reveal a pyroxene‐rich mineralogy, which is also evident in Mössbauer spectra and in normative mineralogy derived from bulk chemistry measured by the alpha particle X‐ray spectrometer. The correspondence of Bounce Rock’s chemical composition with the composition of certain basaltic shergottites, especially Elephant Moraine (EET) 79001 lithology B and Queen Alexandra Range (QUE) 94201, is very close, with only Cl, Fe, and Ti exhibiting deviations. Chemical analyses further demonstrate characteristics typical of Mars such as the Fe/Mn ratio and P concentrations. Possible shock features support the idea that Bounce Rock was ejected from an impact crater, most likely in the Meridiani Planum region. Bopolu crater, 19.3 km in diameter, located 75 km to the southwest could be the source crater. To date, no other rocks of this composition have been encountered by any of the rovers on Mars. The finding of Bounce Rock by the Opportunity rover provides further direct evidence for an origin of basaltic shergottite meteorites from Mars.  相似文献   
106.
107.
The Doppler orbitography and radiopositioning integrated by satellite (DORIS) system was originally developed for precise orbit determination of low Earth orbiting (LEO) satellites. Beyond that, it is highly qualified for modeling the distribution of electrons within the Earth’s ionosphere. It measures with two frequencies in L-band with a relative frequency ratio close to 5. Since the terrestrial ground beacons are distributed quite homogeneously and several LEOs are equipped with modern receivers, a good applicability for global vertical total electron content (VTEC) modeling can be expected. This paper investigates the capability of DORIS dual-frequency phase observations for deriving VTEC and the contribution of these data to global VTEC modeling. The DORIS preprocessing is performed similar to commonly used global navigation satellite systems (GNSS) preprocessing. However, the absolute DORIS VTEC level is taken from global ionospheric maps (GIM) provided by the International GNSS Service (IGS) as the DORIS data contain no absolute information. DORIS-derived VTEC values show good consistency with IGS GIMs with a RMS between 2 and 3 total electron content units (TECU) depending on solar activity which can be reduced to less than 2 TECU when using only observations with elevation angles higher than \(50^\circ \) . The combination of DORIS VTEC with data from other space-geodetic measurement techniques improves the accuracy of global VTEC models significantly. If DORIS VTEC data is used to update IGS GIMs, an improvement of up to 12  % can be achieved. The accuracy directly beneath the DORIS satellites’ ground-tracks ranges between 1.5 and 3.5 TECU assuming a precision of 2.5 TECU for altimeter-derived VTEC values which have been used for validation purposes.  相似文献   
108.
The Qreiya Beds that record the ‘mid-Paleocene event’ at Gabal Nezzazat occur within the Igorina albeari (P3b) Zone and constitute part of a 14-m thick shale succession that ranges in age from Early to Late Paleocene. They are composed of four alternating dark grey and brown shale beds, which are thinly laminated, phosphatic, organic-rich and extremely sulphidic. They are characterized by distinct enrichment and high peak anomalies in chalcophiles (Zn, Co, Ni, Cu and Pb) and organic association elements (V and Cr), especially within the brown organic-rich beds. It is concluded that these elements are incorporated into the phosphatic debris, sulphides and organic matter. In contrast, the grey beds are enriched in clay minerals and quartz. Clay mineral assemblages indicate alternating periods of warm/humid climate (high kaolinite) and dry climate (low kaolinite) during the formation of the grey and brown beds, respectively. The sediments of the Qreiya Beds yield lithological, biotic, geochemical and mineralogical data indicative of suboxic/anoxic marine environments as a result of high productivity and/or upwelling. The top metre of the succession below the Qreiya Beds is characterized by a progressive change from faunas dominated by praemurcurids to faunas dominated by Morozovilids, and by a progressive upward decrease in δ13Ccarb and δ18Ocarb values. The foraminiferal faunal change may reflect shallowing and warming preceding deposition of the Qreiya Beds. The change in isotopic values is inferred to be the result of surface weathering, fluvial input and diagenesis with no evidence of any primary change that could support presence of a hyperthermal event.  相似文献   
109.
The time scales and mechanics of gravitationally driven crystal settling and compaction is investigated through high temperature (1,280–1,500 °C) centrifuge-assisted experiments on a chromite-basalt melt system at 100–1,500g (0.5 GPa). Subsequently, the feasibility of this process for the formation of dense chromite cumulate layers in large layered mafic intrusions (LMIs) is assessed. Centrifugation leads to a single cumulate layer formed at the gravitational bottom of the capsule. The experimentally observed mechanical settling velocity of a suspension of ~24 vol% chromite is calculated to be about half (~0.53) of the Stokes settling velocity, with a sedimentation exponent n of 2.35 (3). Gravitational settling leads to an orthocumulate layer with a porosity of 0.52 (all porosities as fraction). Formation times for such a layer from a magma with initial chromite contents of 0.1–1 vol% are 140–3.5 days, equal to a growth rate of 0.007–0.3 m/day for grain sizes of 1–2 mm. More compacted chromite layers form with increasing centrifugation time and acceleration through chemical compaction: An increase of grain contact areas and grain sizes together with a decrease in porosity is best explained by pressure dissolution at grain contacts, reprecipitation and grain growth into the intergranular space and a concomitant expulsion of intergranular melt. The relation between the porosity in the cumulate pile and effective pressure integrated over time (Δρ · h · a · t) is best fit with a logarithmic function, in fact confirming that a (pressure) dissolution–reprecipitation process is the dominant mechanism of compaction. The experimentally derived equation allows calculating compaction times: 70–80 % chromite at the bottom of a 1-m-thick chromite layer are reached after 9–250 years, whereas equivalent compaction times are 0.2–0.9 years for olivine (both for 2 mm grain size). The experiments allow to determine the bulk viscosities of chromite and olivine cumulates to be of magnitude 109 Pa s, much lower than previously reported. As long as melt escape from the compacting cumulate remains homogeneous, fluidization does not play any role; however, channelized melt flow may lead to suspension and upward movement of cumulate crystals. In LMIs, chromitite layers are typically part of a sequence with layers of mafic minerals, compaction occurs under the additional weight of the overlying layers and can be achieved in a few years to decades.  相似文献   
110.
Humans colonized the Balearic Islands 5–4 ka ago. They arrived in a uniquely adapted ecosystem with the Balearic mountain goat Myotragus balearicus (Bovidae, Antilopinae, Caprini) as the only large mammal. This mammal went extinct rapidly after human arrival. Several hypotheses have been proposed to explain the extinction of M. balearicus. For the present study ancient DNA analysis (Sanger sequencing, Roche-454, Ion Torrent), and pollen and macrofossil analyses were performed on preserved coprolites from M. balearicus, providing information on its diet and paleo-environment. The information retrieved shows that M. balearicus was heavily dependent on the Balearic box species Buxus balearica during at least part of the year, and that it was most probably a browser. Hindcast ecological niche modelling of B. balearica shows that local distribution of this plant species was affected by climate changes. This suggests that the extinction of M. balearicus can be related to the decline and regional extinction of a plant species that formed a major component of its diet. The vegetation change is thought to be caused by increased aridity occurring throughout the Mediterranean. Previous hypotheses relating the extinction of M. balearicus directly to the arrival of humans on the islands must therefore be adjusted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号