首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   13篇
  国内免费   2篇
测绘学   2篇
大气科学   10篇
地球物理   50篇
地质学   61篇
海洋学   29篇
天文学   45篇
自然地理   3篇
  2024年   1篇
  2023年   1篇
  2021年   2篇
  2020年   7篇
  2019年   6篇
  2018年   6篇
  2017年   9篇
  2016年   3篇
  2015年   2篇
  2014年   8篇
  2013年   5篇
  2012年   9篇
  2011年   6篇
  2010年   7篇
  2009年   11篇
  2008年   10篇
  2007年   11篇
  2006年   6篇
  2005年   7篇
  2004年   7篇
  2003年   10篇
  2002年   5篇
  2001年   7篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   6篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有200条查询结果,搜索用时 359 毫秒
101.
A model of ocean-crust accretion for the Superior province, Canada   总被引:5,自引:0,他引:5  
One of the keys to understanding the origin of Archaean greenstone belts lies in the geological relationships between mafic and ultramafic greenstones, felsic to intermediate volcanic rocks and terrigenous sediments. Traditional models for greenstone belt evolution have been based on in-situ stratigraphic relationships. Most of these models, for example an oceanic island-arc developed on oceanic basement, back-arc basins, and the recently popular plume model, predict concordant stratigraphic relationships among the various greenstone belt lithologies. However, rather than being depositional in nature, several authors have indicated that many of the relationships between the different lithologies in greenstone belts are in fact tectonic, suggesting an allochthonous origin for most greenstone sequences. All of these latter models make analogies to Phanerozoic tectonic processes involving accretion of oceanic materials with volcanism related to both plate subduction and rifting.

In this paper, we have evaluated the geological relationships between volcanic rocks and sediments in three regions in the Superior province, where the accretion of oceanic material can be documented, and direct comparisons are made to geological processes in Phanerozoic accretionary complexes. In the Malartic area in the southeastern Abitibi Subprovince, 3 to 4 km thick slices of komatiite and tholeiite, with intercalated terrigenous sediment, are tectonically imbricated and are overlain by calc-alkaline volcanics which postdate tectonic stacking. In both the Larder Lake region of the southwestern Abitibi belt and in the Beardmore-Geraldton belt, at the south-eastern limit of the Wabigoon belt, slices of iron-rich tholeiite and chemical sediments of an oceanic origin are tectonically imbricated with terrigenous sediment.

The Malartic-Val d'Or area is considered to be an example of accretion of an Archaean oceanic plateau, while the Larder Lake and the Beardmore-Geraldton regions are potentially typical of accretion of normal oceanic crust in an arc-environment. Phanerozoic accretion of oceanic crust is accompanied by a step-back in subduction, and in this paper we suggest that oceanic crust accretion may have been the principal mechanism by which the locus of subduction migrated towards the south of the Superior province. Asthenospheric upwelling associated with the isolated sinking plate may have been responsible for widespread late-magmatism. This scenario requires that magmas be erupted through previously accreted volcanic, plutonic and sedimentary material. Furthermore, later ridge subduction will result in transpressional tectonics and eruption of mafic sequences over mature and immature volcano-plutonic sequences. The combined result of the plate tectonic scenario envisaged would result in the well-described “cyclic stratigraphy” of many granite greenstone sequences.  相似文献   

102.
Abstract Fossil dolphins belonging to the extinct family Kentriodontidae are small to medium-sized toothed cetaceans, which probably include the ancestors of some living species. Kentriodontids are known from rocks of Late Oligocene to Late Miocene age in various parts of the world. Among kentriodontids, species in the subfamily Kentriodontinae (e.g. species of Kentriodon Kellogg, 1927) are the most ubiquitous and generalized; these are now known from latest Oligocene to earliest Miocene strata in New Zealand and Patagonia, and Middle Miocene deposits in Maryland, Virginia, California and Japan. The diversity, morphologies and distributions of Miocene species of Kentriodontinae seem to parallel those of the living species of mostly pelagic delphinids in the subfamily Delphininae, and the fossil group may have been an ecological or behavioral/functional counterpart of the latter. Kentriodontines are inferred to have been wide-ranging neritic to pelagic animals that ate small fish and other nectonic organisms; they were probably active echolocators, and might have formed large schools. They are relatively common as fossils and, therefore, are potentially useful for intercontinental correlations of marine deposits.  相似文献   
103.
104.
The species composition, distribution, and size of eel larvae, or leptocephali, caught near the continental shelf in subtropical and temperate regions of East Asia were compared between two seasons (May–Jun and Oct–Dec) to learn about the seasonality of reproduction of marine eels. There was greater species richness and evidence of spawning by more species of marine eels during the late autumn surveys in both the East China Sea (ECS) and in Suruga Bay along the east coast of Japan. Small leptocephali <10 mm TL and a wide range of sizes of various taxa were collected during both seasons along the outer edge of the continental shelf in the ECS, indicating that some marine eels may spawn there all year. The lack of small leptocephali during the spring survey in Suruga Bay suggested that most eels have a clear seasonal cycle of summer or autumn spawning at the higher latitudes of coastal Japan where there is much greater fluctuation of water temperature throughout the year than in the ECS. At lower latitudes such as in the ECS, and in tropical areas where water temperatures are higher and more constant, some marine eels may spawn all year round.  相似文献   
105.
106.
107.
108.
Stratigraphic and geochronological data show that the late Cenozoic Ueno Basalts and related Nomugi-Toge and Hida volcanic suites of the Norikura Volcanic Chain, Japan, were active for ~ 1 million years. Temporal and spatial variations of the volcanic activity and chemistry of the volcanic products suggest that it was induced by a common mantle diapir. The Ueno Basalts are small monogenetic volcanoes scattered over an area 50 km in diameter, and comprise a small volcanic province. The Ueno Basalts are almost all subalkalic basalt to basaltic andesite, erupted through the late Pliocene to the earliest Pleistocene (2.7–1.5 Ma). Andesite to dacite of the Nomugi-Toge volcanic rocks were concurrently active in the back arc side, and two eruption stages (2.6–2.2 and 2.1–1.7 Ma) are recognizable. Two voluminous dacite and rhyolite ignimbrites, the Hida Volcanic Rocks, were erupted deeper in the back-arc region, at ca 1.75 and 1.7 Ma. Both the Nomugi-Toge and Hida suites are also subalkalic, except for the last ignimbrite. In the Ueno Basalts, alkali olivine basalt was erupted in the earliest stage, and was followed by subalkalic basalt, showing that the magma segregation depth ascended with time. This coincided with uplift of the volcanic province and with quasi-concentric expansion of the eruption centers, suggesting that an upwelling mantle diapir was the cause of the volcanism. The Nomugi-Toge andesite–dacite lavas and the Hida dacite and rhyolite ignimbrites are considered to have originated from the same mantle diapir, because of their close proximity to the Ueno Basalts and their near-contemporaneous activity. Mantle diapirs have a significant role in the origin of subalkalic volcanic rocks in the island arcs.  相似文献   
109.
Magma plumbing system beneath Ontake Volcano, central Japan   总被引:2,自引:0,他引:2  
Ontake Volcano in central Japan was last active from ~ 100–35 Ka. The eruptions contained rhyodacite pumice and lavas in the first stage (stage O1, > 33 km3), followed by eruptions of andesite lavas and pyroclastics (stages O2 and O3, > 16 km3). Modeling of major and incompatible elements with Sr isotope ratios suggests that the primary magma was a high-alumina basalt. One andesite magma type appears to have evolved from the basalt in a closed system magma chamber, in part by fractional crystallization, and its generation included crustal assimilation. The other andesite magma type is considered to have evolved in an open system magma chamber in which repeated input of primary magma occurred together with wall-rock assimilation and fractional crystallization. The rhyodacite is inferred to have evolved in a closed system magma chamber by fractional crystallization of the second type of andesite. These genetic relationships require that the magma chamber functioned alternately as an open and a closed system. Geobarometry indicates that there may have been multiple magma chambers, located in the upper crust for the rhyodacite, near the upper–lower crust interface for the andesite and in the mid-lower crust for the basalt. These chambers were stacked to form the magma plumbing system of Ontake. Incompatible element compositions of the basalt are considered to have changed during the eruptions, suggesting that two different plumbing systems for stage O1 magma and for stages O2, O3 magmas existed during the 65 Ka of activity. Evolutionary history of the systems implies that the primary magma was introduced into the magma plumbing system each for ~ 17 500 years and that the life span of a magma plumbing system was shorter than 40 Ka.  相似文献   
110.
Tadahiro  Shibata  Yuji  Orihashi  Gaku  Kimura  Yoshitaka  Hashimoto 《Island Arc》2008,17(3):376-393
Abstract   Growth of an accretionary prism is effected by frontal accretion and deep subsurface underplating at the base of the prism. A systematic oceanward and structurally downward younging of underplated sequences is expected as the prism thickens and grows. To test this hypothesis and explore the processes of underplating, the U–Pb ages of zircon grains contained in underplated mélange sequences or packages of the Late Cretaceous and early Paleogene accretionary complex of the Shimanto Belt, southwest Japan, were determined using LA–ICP–MS laser technology. The results document systematic but intermittent younging ages within a single underplated mélange package. This finding suggests that underplating took place episodically during a period of several million years and that between episodes of underplating, a large amount of sediment was subducted to depths much greater than where underplating was occurring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号