首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   433篇
  免费   11篇
  国内免费   16篇
测绘学   37篇
大气科学   35篇
地球物理   75篇
地质学   199篇
海洋学   20篇
天文学   68篇
综合类   12篇
自然地理   14篇
  2024年   1篇
  2023年   2篇
  2022年   10篇
  2021年   9篇
  2020年   9篇
  2019年   6篇
  2018年   32篇
  2017年   25篇
  2016年   37篇
  2015年   26篇
  2014年   28篇
  2013年   41篇
  2012年   14篇
  2011年   11篇
  2010年   19篇
  2009年   18篇
  2008年   17篇
  2007年   11篇
  2006年   10篇
  2005年   12篇
  2004年   12篇
  2003年   15篇
  2002年   6篇
  2001年   10篇
  2000年   7篇
  1999年   3篇
  1998年   4篇
  1997年   6篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   5篇
  1989年   5篇
  1988年   6篇
  1987年   7篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   6篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1974年   1篇
排序方式: 共有460条查询结果,搜索用时 171 毫秒
101.
This paper presents a three dimensional Computational Fluid Dynamics (CFD) model to investigate the flow dynamics of solid–gas phases during fine grinding in an air jet mill. Alpine 100AFG fluidized bed air jet mill is considered for the study and the jet milling model is simulated using FLUENT 6.3.2 using a standard k-ε model. The model is developed in GAMBIT 2.3.16 and meshed by tet/hybrid (T-Grid) and Triangular (Pave) meshes. The effects of operating parameters such as solid feed rate, grinding air pressure and internal classifier speed on the performance of the jet mill are analyzed. The CFD simulation results are presented in the forms of dual phase vector plot, volume fraction of phases and particle trajectories during fine grinding process. The mass of ground feed entering and leaving the cyclone (underflow) is also computed by simulation. The proposed model gives realistic predictions of the flow dynamics within the jet mill. Experiments are conducted on the Alpine 100AFG jet mill to study the particle size, morphology and mass of the ground product. The numerical results are found in good agreement with the experimental results.  相似文献   
102.
Tanneries located in an industrial development area of Ranipet (India) manufactured chromate chemicals during 1976?C1996. A large quantity of associated hazardous solid wastes has been stacked about 5-m high above ground level, spread over 3.5?ha inside one of the factory premises. The study area receives an average annual rainfall of 1,100?mm. The granitic formation in the northern part of Palar River catchment has high infiltration rates and has resulted in fast migration of the contamination to the water table. Chromium levels in the groundwater were found up to 275?mg/l. The available hydrogeological, geophysical and groundwater quality data bases have been used to construct a groundwater flow and mass transport model for assessing the groundwater contamination and it has been calibrated for the next 30?years. The migration has been found to be very slow, with a groundwater velocity of 10?m/year. This is the first field-scale study of its kind in this industrial area. The findings are of relevance to addressing the groundwater pollution due to indiscriminate disposal practices of hazardous waste in areas located on the phreatic aquifer. Further, it has been reported that the untreated effluent discharge adjacent to the chromium dump site is most influential in the migration of contaminants.  相似文献   
103.
In order to assess the impact of coal mining on groundwater quality in Talcher Coalfield area, seventeen groundwater samples for pre and post monsoon seasons were collected from borewells/dugwells and analysed for major ions and trace elements. Water quality analysis of major ions and trace elements shows elevated concentration in few groundwater samples. The water quality data was analysed using multivariate statistical techniques viz., factor analysis and cluster analysis. The result clearly shows that the variation in the season is due to recharge of rain water during monsoon. The factor and cluster analysis brought out impact of intensity by mining activity on groundwater regime. Discharge of mining seepage effluents and its interaction with the groundwater contaminate the surrounding groundwater regime. Multivariate statistical techniques are potential tools and provide greater precision for identifying contaminant parameters linkages with mining environment.  相似文献   
104.
The Central Godavari delta is located along the Bay of Bengal Coast, Andhra Pradesh, India, and is drained by Pikaleru, Kunavaram and Vasalatippa drains. There is no groundwater pumping for agriculture as wells as for domestic purpose due to the brackish nature of the groundwater at shallow depths. The groundwater table depths vary from 0.8 to 3.4 m and in the Ravva Onshore wells, 4.5 to 13.3 m. Electrical Resistivity Tomography (ERT) surveys were carried out at several locations in the delta to delineate the aquifer geometry and to identify saline water aquifer zones. Groundwater samples collected and analyzed for major ions for assessing the saline water intrusion and to identify the salinity origin in the delta region. The results derived from ERT indicated low resistivity values in the area, which can be attributed to the existence of thick marine clays from ground surface to 12–15 m below ground level near the coast and high resistivity values are due to the presence of coarse sand with freshwater away from the coast. The resistivity values similar to saline water <0.01 Ω m is attributed to the mixing of the saline water along surface water drains. In the Ravva Onshore Terminal low resistivity values indicated up coning of saline water and mixing of saline water from Pikaleru drain. The SO 4 ?2 /Cl?and Na+2/Cl?ratios did not indicate saline water intrusion and the salinity is due to marine palaeosalinity, dilution of marine clays and dissolution of evaporites.  相似文献   
105.
International investors in large infrastructure projects face numerous risks. To explore this issue, this paper compares the development of two hydropower stations in Rasuwa District, Nepal: Upper Trishuli 3A, which is fully funded by a Chinese government bank, and Rasuwagadhi, which is fully funded by local government banks. The construction of these two plants was compared between 2012 and 2020 using a visual interpretation method to extract data on roads, buildings, dams, and vehicles from 1-m-resolution remote sensing imagery. Two methods were used to compare the environmental impacts of each plant. Landsat 7/8 30-m imagery was used to monitor changes in the normalized difference vegetation index around the Upper Trishuli 3A hydropower station from 2012 to 2020 and around the Rasuwagadhi hydropower station from 2014 to 2020. Then, 1-m-resolution imagery was used to observe land-cover differences in these areas and time periods. The results indicate that: (1) despite various challenges, such as geological disasters, the COVID-19 pandemic, and a blockade by the Indian government, there was no difference in construction progress between the two hydropower stations. (2) The Upper Trishuli 3A Hydropower Station was associated with better environmental protection work, as there were continuous declines in vegetation growth near Rasuwagadhi and increased overall vegetation growth near Upper Trishuli 3A. (3) Energy projects funded by the Belt and Road Initiative have benefited developing countries enormously. Finally, local conditions should be thoroughly investigated during the construction of foreign-funded power stations.  相似文献   
106.
Gandaki River Basin (GRB) is an important part of the central Himalayan region, which provides habitat for numerous wild species. However, climatic changes are making the habitat in this basin more vulnerable. This paper aims to assess the potential impacts of climate change on the spatial distributions of habitat changes for two vulnerable species, Himalayan black bear (Ursus thibetanus laniger) and common leopard (Panthera pardus fusca), using the maximum entropy (MaxEnt) species distribution model. Species occurrence locations were used along with several bioclimatic and topographic variables (elevation, slope and aspect) to fit the model and predict the potential distributions (current and future) of the species. The results show that the highly suitable area of Himalayan black bear within the GRB currently encompasses around 1642 km2 (5.01% area of the basin), which is predicted to increase by 51 km2 in the future (2050). Similarly, the habitat of common leopard is estimated as 3999 km2 (12.19% of the GRB area), which is likely to increase to 4806 km2 in 2050. Spatially, the habitat of Himalayan black bear is predicted to increase in the eastern part (Baseri, Tatopani and north from Bhainse) and to decrease in the eastern (Somdang, Chhekampar), western (Burtibang and Bobang) and northern (Sangboche, Manang, Chhekampar) parts of the study area. Similarly, the habitat of common leopard is projected to decrease particularly in the eastern, western and southern parts of the basin, although it is estimated to be extended in the southeastern (Bhainse), western (Harichaur and northern Sandhikhark) and north-western (Sangboche) parts of the basin. To determine the habitat impact, the environmental variables such as elevation, Bio 15 (precipitation seasonality) and Bio 16 (precipitation of wettest quarter) highly contribute to habitat change of Himalayan black bear; while Bio 13 (precipitation of wettest month) and Bio 15 are the main contributors for common leopard. Overall, this study predicted that the suitable habitat areas of both species are likely to be impacted by climate change at different altitudes in the future, and these are the areas that need more attention in order to protect these species.  相似文献   
107.
A preliminary study was undertaken to determine the optimal conditions for the biodegradation of a crude oil. Among 57 oil‐degrading bacterial cultures isolated from oil‐contaminated soil samples, Bacillus sp. IOS1‐7, Corynebacterium sp. BPS2‐6, Pseudomonas sp. HPS2‐5, and Pseudomonas sp. BPS1‐8 were selected for the study based on the efficiency of crude oil utilization. Along with the selected individual strains, a mixed bacterial consortium prepared using the above strains was also used for degradation studies. The mixed bacterial consortium showed more growth and degradation than did individual strains. At 1% crude oil concentration, the mixed bacterial consortium degraded a maximum of 77% of the crude oil. This was followed by 69% by Pseudomonas sp. BPS1‐8, 64% by Bacillus sp. IOS1‐7, 45% by Pseudomonas sp. HPS2‐5, and 41% by Corynebacterium sp. BPS2‐6. The percentage of degradation by the mixed bacterial consortium decreased from 77 to 45% as the concentration of crude oil was increased from 1 to 12%. Temperature of 35°C and pH 7 were found to be optimum for maximum degradation.  相似文献   
108.
M5 model tree based modelling of reference evapotranspiration   总被引:1,自引:0,他引:1  
This paper investigates the potential of M5 model tree based regression approach to model daily reference evapotranspiration using climatic data of Davis station maintained by California irrigation Management Information System (CIMIS). Four inputs including solar radiation, average air temperature, average relative humidity, and average wind speed whereas reference evapotranspiration calculated using a relation provided by the CIMIS was used as output. To compare the performance of M5 model tree in predicting the reference evapotranspiration, FAO–56 Penman–Monteith equation and calibrated Hargreaves–Samani relation was used. A comparison of results suggests that M5 model tree approach works well in comparison to both FAO–56 and calibrated Hargreaves–Samani relations. To judge the generalization capability of M5 model tree approach, model created by using the Davis data set was tested with the datasets of four different sites. Results from this part of the study suggest that M5 model tree could successfully be employed in modeling the reference evapotranspiration. Further, sensitivity analysis with M5 model tree approach suggests the suitability of solar radiation, average air temperature, average relative humidity, and average wind speed as input parameters to model the reference evapotranspiration Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
109.
110.
甘达基河流域(Gandaki River Basin,GRB)是喜马拉雅中部地区的一部分,该地区栖息着许多珍稀的野生动物。由于气候和人类活动的影响,许多珍稀保护物种的生境处于危险之中。本研究基于最大熵(MaxEnt)模型,运用生物气候、土地覆被和DEM数据,分析各环境要素对棕尾虹雉(Lophophorusimpejanus)的生境适宜性的影响,评估棕尾虹雉现在状况和未来栖息地分布的变化。研究表明,目前棕尾虹雉的高度适宜栖息地面积约为749 km^2,主要分布在流域北部、东部和西部,尤其是郎塘国家公园、马纳斯卢峰自然保护区和安纳布尔纳峰自然保护区等保护区内。到2050年,棕尾虹雉的高度适宜栖息地面积将减少至561 km^2,主要在流域北部和西北部(即Chhyo,Tatopani,Humde和Chame地区)。未来环境变化的模拟表明,由于适宜栖息地面积的减少,棕尾虹雉面临的生存风险将增加。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号