首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   4篇
  国内免费   1篇
测绘学   2篇
大气科学   3篇
地球物理   34篇
地质学   36篇
海洋学   20篇
天文学   15篇
自然地理   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   5篇
  2008年   5篇
  2007年   3篇
  2006年   6篇
  2005年   2篇
  2004年   1篇
  2003年   8篇
  2002年   4篇
  2001年   2篇
  2000年   4篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1976年   1篇
  1974年   2篇
  1964年   1篇
  1963年   1篇
  1960年   1篇
排序方式: 共有111条查询结果,搜索用时 31 毫秒
41.
We present high angular resolution spectra taken along the jets from L1551 IRS 5 and DG Tau obtained with the Subaru Telescope. The position-velocity diagrams of the [Fe II] λ 1.644 μmemission line revealed remarkably similar characteristics for the two sources, showing two distinct velocity components separated from each other in both velocity and space with the entire emission range blueshifted with respect to the stellar velocity. The high velocity component (HVC) has a velocity of –200 ––300 km s-1 with a narrow line width, while the low velocity component (LVC) is around –100 km s-1 exhibitinig a broad line width. The HVC is located farther away from the origin and is more extended than the LVC. Our results suggest that the HVC is a well-collimated jet originating from the region close to the star, while the LVC is a widely-opened wind accelerated in the region near the inner edge of the accretion disk.  相似文献   
42.
In August 2016, Typhoon 1610 (Lionrock) caused heavy rainfall in Hokkaido, which led to the discharge of a large volume of sediment and water from catchments on the eastern slope of the northern Hidaka Range. The eight catchments examined in this study are characterized by granitic lithology and late Pleistocene periglacial landforms with weakly cohesive, low-resistance periglacial debris thickly covering the weathered bedrocks. This characteristic of the landscape presumably provided a transport-limited condition where some debris flows were initiated by shallow landslides. As they moved, the debris flows grew larger through mobilization and erosion of sediment in channel beds and sidewalls. This sediment mobilization and erosion continued for an extensive distance along the course of the river. Morphological changes induced by channel aggradation and bank erosion were considerable and distinctive from upstream to downstream. Granitic periglacial sediments are amply present on the mountain slopes, river channels, and river banks in the area, likely due to the rarity of intensive rainfall events. These distinctive features of fossil periglacial catchments are important for disaster prevention and catchment-scale sediment management in sub-boreal areas, particularly in the context of climate change, which may generate more frequent and intensive rainfall events.  相似文献   
43.
We determined the mineralogical and petrological characteristics of ultramafic rocks dredged from two oceanic core complexes: the Mado Megamullion and 23°30′N non-transform offset massif, which are located within the Shikoku back-arc basin in the Philippine Sea. The ultramafic rocks are strongly serpentinized, but can be classified as harzburgite/lherzolite or dunite, based on relict primary minerals and their pseudomorphs. Strongly elongated pyroxene porphyroclasts with undulatory extinction indicate high-temperature (≥700 °C) strain localization on a detachment fault within the upper mantle at depths below the brittle–viscous transition. During exhumation, the peridotites underwent impregnation by magmatic or hydrothermal fluids, lizardite/chrysotile serpentinization at ≤300 °C, antigorite crystallization, and silica metasomatism that formed talc. These features indicate that the detachment fault zones formed a fluid pathway and facilitated a range of fluid–peridotite interactions.  相似文献   
44.
A dropstone‐bearing, Middle Permian to Early Triassic peri‐glacial sedimentary unit was first discovered from the Khangai–Khentei Belt in Mongolia, Central Asian Orogenic Belt. The unit, Urmegtei Formation, is assumed to cover the early Carboniferous Khangai–Khentei accretionary complex, and is an upward‐fining sequence, consisting of conglomerates, sandstones, and varved sandstone and mudstone beds with granite dropstones in ascending order. The formation was cut by a felsic dike, and was deformed and metamorphosed together with the felsic dike. An undeformed porphyritic granite batholith finally cut all the deformed and metamorphosed rocks. LA‐ICP‐MS, U–Pb zircon dating has revealed the following 206Pb/238U weighted mean igneous ages: (i) a granite dropstone in the Urmegtei Formation is 273 ± 5 Ma (Kungurian of Early Permian); (ii) the deformed felsic dike is 247 ± 4 Ma (Olenekian of Early Triassic); and (iii) the undeformed granite batholith is 218 ± 9 Ma (Carnian of Late Triassic). From these data, the age of sedimentation of the Urmegtei Formation is constrained between the Kungurian and the Olenekian (273–247 Ma), and the age of deformation and metamorphism is constrained between the Olenekian and the Carnian (247–218 Ma). In Permian and Triassic times, the global climate was in a warming trend from the Serpukhovian (early Late Carboniferous) to the Kungurian long and severe cool mode (328–271 Ma) to the Roadian to Bajocian (Middle Jurassic) warm mode (271–168 Ma), with an interruption with the Capitanian Kamura cooling event (266–260 Ma). The dropstone‐bearing strata of the Urmegtei Formation, together with the glacier‐related deposits in the Verkhoyansk, Kolyma, and Omolon areas of northeastern Siberia (said to be of Middle to Late Permian age), must be products of the Capitanian cooling event. Although further study is needed, the dropstone‐bearing strata we found can be explained in two ways: (i) the Urmegtei Formation is an autochthonous formation indicating a short‐term expansion of land glacier to the central part of Siberia in Capitanian age; or (ii) the Urmegtei Formation was deposited in or around a limited ice‐covered continent in northeast Siberia in the Capitanian and was displaced to the present position by the Carnian.  相似文献   
45.
A large devastating earthquake with a magnitude of 7.6 struck in Kashmir on Oct. 8, 2005. The largest city influenced by the earthquake was Muzaffarabad. Balakot town was the nearest settlement to the epicenter, and it was the most heavily damaged. The earthquake caused extensive damage to housing and structures founded on loose deposits or weathered/sheared rock masses. Furthermore, extensive slope failures occurred along Neelum and Jhelum valleys, which obstructed both river flow and roadways. In this article, failures of natural and cut slopes as well as other ground failures induced by the earthquake and their geotechnical evaluation are presented, and their implications on civil infrastructures and site selection for reconstruction and rehabilitation are discussed. It is suggested that if housing and constructions on soil slopes containing boulders as observed in Balakot and Muzaffarabad are allowed, there should be a safety zone between the slope crest and allowable construction boundary.  相似文献   
46.
基于微粒变化对崇测冰帽浅层冰芯的定年结果   总被引:6,自引:1,他引:5  
冰芯年代学的建立, 对于稳定同位素定年方法失效的钻点尤为困难. 依据粒径在0.66~1.33μm之间的不可溶尘埃微粒的浓度垂向分布, 并结合阳离子Ca2 的浓度剖面变化, 实现了对崇测冰帽冰芯浅层的断代. 该冰芯钻自海拔6 532 m的冰穹顶部, 解析的18.7 m冰芯长度占到钻点冰层深度约2/5, 辅助的定年参数包括钻点表层5 a的实测净积累率和大气核试验的地层标志. 综合各种技巧定年, 崇测冰帽该冰芯覆盖的记录年代为1902-1992年, 最底部累积误差在±2 a(约为2%).  相似文献   
47.
Amongst island arcs, Izu–Bonin is remarkable as it has widespread, voluminous and long-lived volcanism behind the volcanic front. In the central part of the arc this volcanism is represented by a series of seamount chains which extend nearly 300 km into the back-arc from the volcanic front. These back-arc seamount chains were active between 17 and 3 Ma, which is the period between the cessation of spreading in the Shikoku Basin and the initiation of currently active rifting just behind the Quaternary volcanic front. In this paper we present new age, chemical and isotopic data from the hitherto unexplored seamounts which formed furthest from the active volcanic front. Some of the samples come from volcanoes at the western limit of the back-arc seamount chains. Others are collected from seamounts of various sizes which lie on the Shikoku Basin crust (East Shikoku Basin seamounts). The westernmost magmatism we have sampled is manifested as a series of volcanic edifices that trace the extinct spreading centre of the Shikoku Basin known as the Kinan Seamount Chain (KSC).Chemically, enrichment in fluid-mobile elements and depletion in HFSE relative to MORB indicates that the back-arc seamount chains and the East Shikoku Basin seamounts have a significant contribution of slab-derived material. In this context these volcanoes can be regarded as a manifestation of arc magmatism and distinct from the MORB-like lavas of the Shikoku back-arc basin. 40Ar/39Ar ages range from 15.7 to 9.6 Ma for the East Shikoku Basin seamounts, indicating this arc magmatism started immediately after the Shikoku Basin stopped spreading.Although the KSC volcanoes are found to be contemporaneous with the seamount chains and East Shikoku Basin seamounts, their chemical characteristics are very different. Unlike the calc-alkaline seamount chains, the KSC lavas range from medium-K to shoshonitic alkaline basalt. Their trace element characteristics indicate the absence of a subduction influence and their radiogenic isotope systematics reflect a mantle source combining a Philippine Sea MORB composition and an enriched mantle component (EM-1). One of the most remarkable features of the KSC is that their geochemistry has a distinct temporal variation. Element ratios such as Nb/Zr and concentrations of incompatible elements such as K2O increase with decreasing age and reach a maximum at ca. 7 Ma when the KSC ceased activity.Based on the chemical and temporal information from all the data across the back-arc region, we have identified two contrasting yet contemporaneous magmatic provinces. These share a tectonic platform, but have separate magmatic roots; one stemming from subduction flux and the other from post-spreading asthenospheric melting.  相似文献   
48.
The Archean continental crusts account for ca.20% of the present volume,but the thermal history of the Earths' mantle suggests much more continental crusts were formed in the early Archean.Because the Archean continental crust underwent severe metamorphism,it is important to avoid influence by the later thermal events.We carried out a comprehensive geochronological work of Cathodoluminescence(CL) observation and U-Pb dating of zircons from orthogneisses and supracrustal rocks over the Saglek Block to obtain their protolith ages.The zircons were classified into three domains of core,mantle and rims,and the cores were further classified into three groups of inherited,altered and zoned cores based on the zonation on the CL images.We estimated the protolith ages from Pb-Pb ages of the zoned-cores of zircons with low U contents.We made a detailed sketch of a small outcrop in St.John's Harbour South(SJHS) area,and classified the orthogneisses and mafic enclaves into seven generations based on the geologic occurrence.The first and second generations comprise mafic rocks and lack magmatic zircons.We conducted CL imaging and U-Pb dating of zircons from the third,sixth and seventh generation of the orthogneisses to estimate the protolith ages at 3902 L 25,3892 ± 33 and 3897 ± 33 Ma for each,supporting the presence of the over 3.9 Ca Iqaluk Gneiss.The geological occurrence that the mafic rocks occur as enclaves within the 3.9 Ga Iqaluk Gneiss indicates that they are the oldest supracrustal rocks in the world.Our geochronological and geological studies show the Uivak Gneiss is quite varied in lithology and age from 3.6 to 3.9 Ga,and tentatively classified into six groups based on their ages.The oldest Uivak Gneiss components including the Iqaluk Gneiss are present around the SJHS area,and the orthogneisses become young as it is away.The lines of evidence of overprinting of younger granitoid on older granitoid in small outcrops and geological-map scale as well as presence of inherited zircons even in the oldest suite suggests that crustal reworking played an important role on erasing the ancient crusts.  相似文献   
49.
The dynamical evolution of two-component star clusters, each of which is enclosed within a perfectly reflecting sphere, is investigated by numerically solving moment equations derived from the Boltzmann equation. One of the two adopted model clusters evolves, starting from a state of no mass segregation, toward an equilibrium state at a quite slow rate. The other one evolves away from an equilibrium state and its central density increases without limit. The different evolutionary behaviors of the two model clusters are explained by the fact that there exists no equilibrium state for such clusters if the total energy is less than a certain critical value. The critical value increases with increasing total mass fraction of the heavier stars. This is qualitatively the same as Spitzer's theorem (1969) expressed in another way.  相似文献   
50.
In this article we describe the basic framework of the computerized geologic mapping system cigma. The system, whic is based on a mathematical formulation of geologic concepts, consists of the following six subsystems: (1) input of geologic data set; (2) inference of stratigraphic sequence; (3) construction of logical models of geologic structures; (4) determination of three-dimensional geologic boundary surfaces; (5) construction of three-dimensional solid model of geologic structures; and (6) graphical presentation. Geologic structures are summarized in several tables called logical models of geologic structures. Each model is constructed automatically from input data on structural relations between geologic bodies. The model interprets the data automatically to create data files necessary to determine the shapes of geologic boundaries; it also provides a threedimensional solid model of geologic structures referring to the shapes of boundaries. As a prototype, we introduce two types of contacts corresponding to conformity and unconformity into the logical model and show that it is possible to draw a geologic map automatically. More complex geologic structures can be introduced into the geologic mapping system through further formulation of geologic structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号