首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   466篇
  免费   19篇
  国内免费   7篇
测绘学   9篇
大气科学   29篇
地球物理   151篇
地质学   135篇
海洋学   53篇
天文学   73篇
综合类   4篇
自然地理   38篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   7篇
  2019年   8篇
  2018年   11篇
  2017年   10篇
  2016年   18篇
  2015年   2篇
  2014年   11篇
  2013年   15篇
  2012年   10篇
  2011年   28篇
  2010年   9篇
  2009年   21篇
  2008年   29篇
  2007年   28篇
  2006年   33篇
  2005年   20篇
  2004年   24篇
  2003年   19篇
  2002年   16篇
  2001年   5篇
  2000年   13篇
  1999年   5篇
  1998年   11篇
  1997年   7篇
  1996年   3篇
  1995年   8篇
  1994年   5篇
  1993年   9篇
  1992年   5篇
  1991年   8篇
  1990年   6篇
  1989年   12篇
  1988年   10篇
  1987年   4篇
  1986年   5篇
  1985年   5篇
  1984年   9篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1979年   4篇
  1978年   2篇
  1977年   5篇
  1971年   2篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
排序方式: 共有492条查询结果,搜索用时 31 毫秒
131.
Abstract. A comprehensive investigation was carried out on the distribution of both trace fossils and sulfur isotopes in mud-stones in the Hokuroku district, northeast Japan, in the hope of delineating the depositional environment of the mudstones in which the Kuroko deposits are embedded. The mudstones are generally massive in structure and usually contain large trace fossils, being indicative of an aerobic biofacies. On the other hand, some mudstones in and above the Kuroko ore horizon are partly laminated and usually contain smaller trace fossils, being assignable to an anaerobic or dysaerobic biofacies. The δ34S values of sulfides in the mudstones above and below the ore horizon range from -40 to -12 %o, indicating mostly oxic depositional conditions in equilibrium with the inferred aerobic biofacies. In the mudstones in the ore horizon, the δ34S values exhibit regionally discriminated variations: -44 to -12 %o in areas far (>1 km) from the known Kuroko deposits and -24 to +6 %o in areas closer to them. The latter high δ34S group implies the temporal occurrence of local anoxic basins in the vicinity of the known Kuroko deposits. At the time of late Nishikurosawa Stage (i.e. the currently assumed Kuroko metallogenic epoch), an intense oceanic stagnation is suggested to have taken place to form the local anoxic basins responsible for the formation and preservation of Kuroko deposits. This oceanic environmental event is considered to be most likely due to increasing biological productivity primarily triggered and enhanced by upwelling of NADW in the paleo-Sea of Japan at that time.  相似文献   
132.
The internal structure and permeability of the Neodani fault, which was last activated at the time of the 1891 Nobi earthquake (M8.0), were examined through field survey and experiments. A new exposure of the fault at a road construction site reveals a highly localized feature of the past fault deformation within a narrow fault core zone. The fault of the area consists of three zone units towards the fault core: (a) protolith rocks; (b) 15 to 30 m of fault breccia, and (c) 200 mm green to black fault gouge. Within the fault breccia zone, cataclastic foliation oblique to the fault has developed in a fine-grained 2-m-wide zone adjacent to the fault. Foliation is defined by subparallel alignment of intact lozenge shaped clasts, or by elongated aggregates of fine-grained chert fragments. The mean angle of 20°, between the foliation and the fault plane suggests that the foliated breccia accommodated a shear strain of γ<5 assuming simple shear for the rotation of the cataclastic foliation. Previous trench surveys have revealed that the fault has undergone at least 70 m of fault displacement within the last 20,000 years in this locality. The observed fault geometry suggests that past fault displacements have been localized into the 200-mm-wide gouge zone. Gas permeability analysis of the gouges gives low values of the order of 10−20 m2. Water permeability as low as 10−20 m2 is therefore expected for the fault gouge zone, which is two orders of magnitude lower than the critical permeability suggested for a fault to cause thermal pressurization during a fault slip.  相似文献   
133.
This paper is concerned with application of the h-adaptive finite element method to dynamic analysis of a pile in liquefiable soil considering large deformation. In finite element analysis of pile behavior in liquefiable soil during an earthquake, especially considering large deformation of liquefied ground, error due to discretization in the zone near the pile becomes very large. Our purpose was to refine the approximation of the finite element method. The updated Lagrangian formulation and a cyclic elasto-plastic model based on the kinematic hardening rule were adopted to deal with the nonlinearity of the soil. The mixed finite element and finite difference methods together with the u-p formulation and Biot's two-phase mixture theory were used. To improve the accuracy and increase the efficiency of finite element analysis, an h-adaptive scheme that included a posteriori error estimation and h-version mesh refinement was applied to the analysis. The calculated results of effective stress were smoothed locally by the extrapolation method and smoothed stress was used to calculate the L2 norm of the effective stress error in the last step of the calculation of each time increment. The mesh was refined by a fission procedure based on the indication of the error estimate As a numerical example, a soil–pile interaction system loaded cyclically was analyzed by our method.  相似文献   
134.
Data recorded by a seismic network deployed the day after the 2004 Mid Niigata Prefecture Earthquake (M6.8) in central Japan are used to determine the major source faults responsible for the mainshock and major aftershocks. Using this high-resolution seismic data, three major source faults are identified: two parallel faults dipping steeply to the west located 5 km apart, and the other dipping eastward and oriented perpendicular to the west-dipping faults. The analysis also reveals that the lateral variation in seismic velocity observed at the surface extends to a depth of 15 km, encompassing the source area of the mainshock. This strong heterogeneity of the crust, related to the complex geological and tectonic evolution of the area, is considered to be responsible for the prominent aftershock activity following the 2004 Niigata event.  相似文献   
135.
136.
Abstract. Chemical and sulfur isotopic compositions were obtained for a series of rocks within the chert‐clastic sequence surrounding the Kajika massive sulfide ore horizon at Shibukawasawa in the Ashio copper‐mining district, Ashio Terrane, central Japan. The sequence is lithologically classified into three units: chert, siliceous shale with basic volcanics, and sandstone‐shale, in ascending stratigraphic order. The Kajika ore horizon corresponds to the lowermost part of the unit that contains siliceous shale with basic volcanics. The rocks around the Kajika ore horizon are enriched in P2O5 (max. 0.22 %), Ba (max. 2400 ppm), Cu (595 ppm), V (323 ppm), Pb (168 ppm), Zn (124 ppm), and Mo (24 ppm) in siliceous shale; and Ba (4220 ppm), Zr (974 ppm), Cr (718 ppm), Ni (492 ppm), V (362 ppm), Zn (232 ppm), Nb (231 ppm), and Co (71 ppm) in the basic volcanics. The siliceous shale is enriched in a number of redox‐sensitive elements such as Cu, V, Pb, Zn, and Mo, which are known to be enriched in black shale and anoxic and hydrothermal sediments. The δ34S values of sulfides in the chert and sandstone‐shale lie in the range of 0±2 %, and those in the siliceous shale range from ‐5 to ‐14 %. The measured δ34S values in the basic volcanics are ‐0.3, ‐2.7, and ‐31.5 %. These heavier δ34S signatures (around 0 %) recorded throughout the sequence indicate that the rocks formed under anoxic bottom‐water conditions. Slightly lighter δ34S values recorded in siliceous shale might reflect significant mixing of sulfides that formed by sulfate‐reducing bacteria in an overlying oxic environment. The long‐term duration of anoxic conditions indicated by the heavier δ34S signature is considered to have played an important role in protecting the Kajika sulfide ores from oxidative decomposition and preserving the ores in sedimentary accumulations.  相似文献   
137.
We found a characteristic space–time pattern of the tidal triggering effect on earthquake occurrence in the subducting Philippine Sea plate beneath the locked zone of the plate interface in the Tokai region, central Japan, where a large interplate earthquake may be impending. We measured the correlation between the Earth tide and earthquake occurrence using microearthquakes that took place in the Philippine Sea plate for about two decades. For each event, we assigned the tidal phase angle at the origin time by theoretically calculating the tidal shear stress on the fault plane. Based on the distribution of the tidal phase angles, we statistically tested whether they concentrate near some particular angle or not by using Schuster's test. In this test, the result is evaluated by p-value, which represents the significance level to reject the null hypothesis that earthquakes occur randomly irrespective of the tidal phase angle. As a result of analysis, no correlation was found for the data set including all the earthquakes. However, we found a systematic pattern in the temporal variation of the tidal effect; the p-value significantly decreased preceding the occurrence of M ≥ 4.5 earthquakes, and it recovered a high level afterwards. We note that those M ≥ 4.5 earthquakes were considerably larger than the normal background seismicity in the study area. The frequency distribution of tidal phase angles in the pre-event period exhibited a peak at the phase angle where the tidal shear stress is at its maximum to accelerate the fault slip. This indicates that the observed small p-value is a physical consequence of the tidal effect. We also found a distinctive feature in the spatial distribution of p-values. The small p-values appeared just beneath the strongly coupled portion of the plate interface, as inferred from the seismicity rate change in the past few years.  相似文献   
138.
Electrical images recorded with Resistivity-At-Bit (RAB) from two sites drilled during Ocean Drilling Program (ODP) Leg 196 were analyzed to study the effects of subduction at the Nankai margin. For the first time in the history of scientific deep-sea drilling in ODP, in situ complete borehole images of the décollement zone were obtained. Analyses of all drilling-induced fracture data indicated that the maximum horizontal compressive stress (SHmax) axes have an azimuth of 303°, and analyses of breakout data from RAB images indicated an azimuth of 310°. These azimuths approximate the convergence direction of the Philippine Sea plate towards the Eurasian plate. The frontal thrust at Site 808 was encountered at about 389 mbsf. Density, porosity, resistivity, and gamma ray data change across the frontal thrust. The décollement zone at the deformation front was identified between 937 and 965 mbsf. The base of the décollement is sharply defined as the maximum extent of conductive fracturing and is marked by abrupt changes in physical properties [Mikada, H., Becker, K., Moore, J.C., Klaus, A., Austin, G.L., Bangs, N.L., Bourlange, S., Broilliard, J., Brückmann, W., Corn, E.R., Davis, E.E., Flemings, P.B., Goldberg, D.B., Gulick, S.S., Hansen, M.B., Hayward, N., Hills, D.J., Hunze, S., Ienaga, M., Ishiguro, H., Kinoshita, M., Macdonald, R.D., McNeill, L., Obana, S., Hong, O.S., Peacock, S., Pettigrew, T.L., Saito, S., Sawa, T., Thaiprasert, N., Tobin, H.J., Tsurumi, H., 2002. Proc. ODP, Initial Rep., 196, College Station, TX, (Ocean Drilling Program)]. The upper boundary of the décollement is marked by several sets of conductive fractures and by high variability in physical properties. The décollement zone is characterized by intense brittle fracturing. These fractures are considered to be the consequence of cyclic stresses and high fluid pressures in this zone. We analyzed fracture dips and their orientations at both sites and found that they are all consistent with a unique stress field model surrounding the two sites.  相似文献   
139.
Keiichi  Sasaki  Akio  Omura  Tetsuo  Miwa  Yoshihiro  Tsuji  Hiroki  Matsuda  Toru  Nakamori  Yasufumi  Iryu  Tsutomu  Yamada  Yuri  Sato  Hiroshi  Nakagawa 《Island Arc》2006,15(4):455-467
Abstract   High-resolution seismic reflection profiles delineated the distribution of mound-shaped reflections, which were interpreted as reefs, beneath the insular shelf western off Irabu Island, Ryukyus, southwestern Japan. A sediment core through one of the mounded structures was recovered from the sea floor at a depth of −118.2 m by offshore drilling and was dated by radiometric methods. The lithology and coral fauna of the core indicate that the mounded structure was composed of coral–algal boundstone suggesting a small-scaled coral reef. High-precision α-spectrometric 230Th/234U dating coupled with calibrated accelerator mass spectrometric 14C ages of corals obtained reliable ages of this reef ranging from 22.18 ± 0.63 to 30.47 ± 0.98 ka. This proves that such a submerged reef was formed during the lowstand stage of marine oxygen isotope stages 3–2. The existence of low-Mg calcite in the aragonitic coral skeleton of 22.18 ± 0.63 ka provides evidence that the reef had once been exposed by lowering of the relative sealevel to at least −126 m during the last glacial maximum in the study area. There is no room for doubt that a coral reef grew during the last glacial period on the shelf off Irabu Island of Ryukyus in the subtropical region of western Pacific.  相似文献   
140.
This paper discusses the applicability of the tension-softening model in the determination of the fracture toughness of rocks, where the fracture toughness evaluated based on the tension-softening model is compared with the crack growth resistance deduced from laboratory-scale hydraulic fracturing tests. It is generally accepted that the fracture process is dominated by the growth of a fracture process zone for most types of rocks. In this study, the J-integral based technique is employed to determine the fracture toughness of Iidate granite on the basis of the tension-softening model, where compact tension specimens of different dimensions were tested in order to examine the specimen size effect on the measured fracture toughness. It was shown that the tension-softening relation deduced from the J-integral based technique allowed us to determine the specimen size independent fracture toughness Kc of Iidate granite. Laboratory-scale hydraulic fracturing tests were performed on cubic specimens (up to a 10 m sized specimen), where cyclic pressurization was conducted using a rubber-made straddle packer to observe the extent of the hydraulically induced crack. The experimental results of pressure and crack length were then used to construct the crack growth resistance curve based on the stress intensity factor K. The crack growth resistance obtained from the hydraulic fracturing tests was observed to initially increase and then level off, giving a constant K value for a long crack extension stage. The plateau K value in the crack growth resistance curve was found to be in reasonable agreement with the fracture toughness Kc deduced from the tension-softening relation. It was demonstrated that the tension-softening model provides a useful tool to determine the appropriate fracture toughness of rocks, which may be applicable for the analysis of the process of large-scale crack extension in rock masses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号