首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yong-Jiang  Liu  Franz  Neubauer  Johann  Genser  Akira  Takasu  Xiao-Hong  Ge Robert  Handler 《Island Arc》2006,15(1):187-198
Abstract   Pelitic schists from Qingshuigou in the Northern Qilian Mountains of China contain mainly glaucophane, garnet, white mica, clinozoisite, chlorite and piemontite. Isotopic age dating of these schists provides new constraints on the formation of the high-grade blueschists at Qingshuigou. White mica 40Ar/39Ar ages range from 442.1 to 447.5 Ma (total fusion age of single grain) and from 445.7 to 453.9 Ma (integrated age of white mica concentrates). These ages (442.1–453.9 Ma) represent the peak metamorphic ages or cooling ages of the blueschists during exhumation shortly after peak metamorphism. The 40Ar/39Ar dates in the present study are similar to ages previously reported for eclogites and blueschists in the area; this suggests that both the eclogites and pelitic sediments underwent high-grade metamorphism during the same subduction event. From this chronological evidence and the presence of well-developed Silurian remnant-sea flysch and Devonian molasse, it is concluded that the Northern Qilian Ocean had closed by the end of the Ordovician, and rapid orogenic uplift followed in the Devonian.  相似文献   

2.
Nguyen D.  Nuong  Tetsumaru  Itaya    Hironobu  Hyodo  Kazumi  Yokoyama 《Island Arc》2009,18(2):282-292
Conglomerates of the Kuma Group, central Shikoku, southwest Japan contain Sanbagawa schist clasts with a variety of metamorphic grades and lithologies. K–Ar and 40Ar/39Ar dating of phengite show all the pelitic schist clasts from low- to high-grade zones have similar phengite ages (82–84 Ma) that are significantly older than those from the in situ Sanbagawa sequence of central Shikoku. This is because the Kuma–Sanbagawa sequence was exhumed earlier than the in situ Asemi sequence with an exhumation process intermediate between those for the Kanto Mountains and the in situ Asemi sequences. 40A/39Ar plateau ages (103 and 117 Ma) of phengite in amphibolites indicate the timing of the early stage of the exhumation of the metamorphic pile, probably close to the peak metamorphic age.  相似文献   

3.
Abstract 40Ar–39Ar analysis of phlogopite separated from a plagioclase lherzolite of the Horoman Peridotite Complex, Hokkaido, Japan, has yielded a plateau age of 20.6 ± 0.5 Ma in an environment where the metamorphic fluid was characterized by an almost atmospheric Ar isotopic ratio. The age spectrum is slightly saddle-shaped, implying some incorporation of excess 40Ar during the formation of the phlogopite at a depth. As the phlogopite has been inferred to have formed in veins and/or interstitials during exhumation of the peridotite body, metasomatic fluids, to which ground- and sea water might have contributed, were probably involved in the formation of phlogopite in the crustal environment. A total 40Ar–39Ar age of 129 Ma of a whole rock sample of the plagioclase lherzolite, from which the phlogopite was separated and is representative of the main lithology of the Horoman Peridotite Complex, indicates the occurrence of excess 40Ar. Hence, the age has no geological meaning.  相似文献   

4.
High‐resolution single‐channel seismic reflection surveys were carried out in the northern Ryukyu Island Arc during an NT05‐14 cruise of the R/V Natsushima. The survey area is located northeast of Amami Oshima and southwest of Kikai Shima immediately south of the current northern limit of coral reef formation in the northwestern Pacific Ocean. The main purpose of the surveys was to ascertain whether coral reefs formed during glacial periods and, if so, to determine their three‐dimensional distribution. We collected 784 km of high‐resolution single‐channel seismic data during the cruise. The acoustic basement is clearly observed under the Amami Spur, off Amami Oshima. The seismic profiles show two anticlines, each with an axis trending northeast to southwest. Thin Quaternary stratified sediment overlies the acoustic basement in the northwestern and southeastern slope areas, as well as between the anticlinal axes. The stratified sediment can be divided into several sedimentary units. The mound‐shaped reflections are found within the stratified sedimentary units in the central to eastern parts of the spur. Because the mound‐shaped reflections are characterized by strong reflections and chaotic internal structures in profiles, they are considered biogenic ‘reefs’ or banks consisting of coarse‐grained bioclasts. They overlie the acoustic basement or stratified sediment and reach 15 m in thickness and 400 m in width. In contrast, irregularly shaped topographic highs were detected at the shelf edge southwest off Kikai Shima, which are likely to be remnants of coral reefs formed during the last glacial period. Our seismic data indicate probable coral reef formation at low stands during glacial stages, such as the Last Glacial Maximum, even in the northern Central Ryukyus. The occurrence of drowned reefs may indicate that their growth rate was not sufficient to keep up with a rapid rise in sealevel after a glacial period.  相似文献   

5.
Akiko  Omura  Koichi  Hoyanagi  Satoko  Ishikawa 《Island Arc》2006,15(3):355-365
Abstract   Both marine and terrigenous organic matter are deposited in shelf and continental slope environments. In the present study, the relationship between environmental changes in the Choshi area and the sedimentation of organic matter was examined. The sediments of the Choshi core were deposited on a shelf environment and their lithology and ichnofacies, as well as the composition of the contained kerogen (insoluble organic matter) indicate a shallowing upward succession. The organic matter preserved in the sediments is of both marine and terrigenous origin, on the basis of C/N ratios (5.90–9.45), δ13C values (−21.6‰−24.6‰) and kerogen microscopy. The total organic carbon (TOC) content (0.39–1.08%) of the sediments shows a positive correlation with the increase of terrigenous organic matter before 500 ka, but decreases (0.26–0.61%) after 500 ka as the shelf environment becomes shallower because of dilution, caused by the input of terrigenous inorganic clasts, and oxidation. The variation in TOC contents was thus influenced by the increasing sedimentation rate of terrigenous materials, including both organic and inorganic particles as the basin filled.  相似文献   

6.
Pore water collected from piezometers installed in a thick clay-rich till were used to compare and evaluate four techniques for obtaining δD and δ18O values in these media. The techniques included mechanical squeezing, centrifugation, azeotropic distillation, and a direct soil-water equilibration technique. Direct CO2-core equilibration yielded sufficiently accurate and reproducible δ18O results of pore water in clay-rich tills. In addition, this method eliminated the need for labor-intensive complete extraction of water from the geologic media. Mechanical squeezing and centrifugation produced results similar to direct equilibration. However, both of these methods exhibited a greater degree of variability and were laborious and more time consuming. Small differences in δ18O values between piezometer water and equilibrated, squeezed, and centhfuged samples suggested that each method collected different fractions of the clay-water reservoir. Although these subtle differences were not conclusive, they did suggest the presence of weakly bound water and highlighted the difference between these three techniques for determining the stable isotopic composition of pore water in clay-rich aquitards. Azeotropic distillation produced a high level of discrepancy in δD andδ18O results compared to the other methods. Incomplete extraction was considered the most probable cause of this error. The results of this study suggested that direct equilibration is the best method for determining detailed δD and δ18O values of pore water in clay-rich aquitards.  相似文献   

7.
Harutaka  Sakai  Minoru  Sawada  Yutaka  Takigami  Yuji  Orihashi  Tohru  Danhara  Hideki  Iwano  Yoshihiro  Kuwahara  Qi  Dong  Huawei  Cai  Jianguo  Li 《Island Arc》2005,14(4):297-310
Abstract   Newly discovered peloidal limestone from the summit of Mount Qomolangma (Mount Everest) contains skeletal fragments of trilobites, ostracods and crinoids. They are small pebble-sized debris interbedded in micritic bedded limestone of the Qomolangma Formation, and are interpreted to have been derived from a bank margin and redeposited in peri-platform environments. An exposure of the Qomolangma detachment at the base of the first step (8520 m), on the northern slope of Mount Qomolangma was also found. Non-metamorphosed, strongly fractured Ordovician limestone is separated from underlying metamorphosed Yellow Band by a sharp fault with a breccia zone. The 40Ar–39Ar ages of muscovite from the Yellow Band show two-phase metamorphic events of approximately 33.3 and 24.5 Ma. The older age represents the peak of a Barrovian-type Eo-Himalayan metamorphic event and the younger age records a decompressional high-temperature Neo-Himalayan metamorphic event. A muscovite whole-rock 87Rb–86Sr isochron of the Yellow Band yielded 40.06 ± 0.81 Ma, which suggests a Pre-Himalayan metamorphism, probably caused by tectonic stacking of the Tibetan Tethys sediments in the leading margin of the Indian subcontinent. Zircon and apatite grains, separated from the Yellow Band, gave pooled fission-track ages of 14.4 ± 0.9 and 14.4 ± 1.4 Ma, respectively. These new chronologic data indicate rapid cooling of the hanging wall of the Qomolangma detachment from approximately 350°C to 130°C during a short period (15.5–14.4 Ma).  相似文献   

8.
Abstract Coral reefs are tropic to subtropic, coastal ecosystems comprising very diverse organisms. Late Quaternary reef deposits are fossil archives of environmental, tectonic and eustatic variations that can be used to reconstruct the paleoclimatic and paleoceanographic history of the tropic surface oceans. Reefs located at the latitudinal limits of coral‐reef ecosystems (i.e. those at coral‐reef fronts) are particularly sensitive to environmental changes – especially those associated with glacial–interglacial changes in climate and sealevel. We propose a land and ocean scientific drilling campaign in the Ryukyu Islands (the Ryukyus) in the northwestern Pacific Ocean to investigate the dynamic response of the corals and coral‐reef ecosystems in this region to Late Quaternary climate and sealevel change. Such a drilling campaign, which we call the COREF (coral‐reef front) Project, will allow the following three major questions to be evaluated: (i) What are the nature, magnitude and driving mechanisms of coral‐reef front migration in the Ryukyus? (ii) What is the ecosystem response of coral reefs in the Ryukyus to Quaternary climate changes? (iii) What is the role of coral reefs in the global carbon cycle? Subsidiary objectives include (i) the timing of coral‐reef initiation in the Ryukyus and its causes; (ii) the position of the Kuroshio current during glacial periods and its effects on coral‐reef formation; and (iii) early carbonate diagenetic responses as a function of compounded variations in climate, eustacy and depositional mineralogies (subtropic aragonitic to warm‐temperate calcitic). The geographic, climatic and oceanographic settings of the Ryukyu Islands provide an ideal natural laboratory to address each of these research questions.  相似文献   

9.
Masaaki  Okuda  Hiroomi  Nakazato  Norio  Miyoshi  Takeshi  Nakagawa  Hiroko  Okazaki  Saneatsu  Saito  Asahiko  Taira 《Island Arc》2006,15(3):338-354
Abstract   The 250-m Choshi core (CHOSHI-1), drilled from hemipelagic muds of the Inubo Group, has been physically, geochemically and tephrochronologically analyzed back to 1 Ma. We provide pollen results for the 19–169 m section of the core (400–780 ka) bracketed by the marker tephra Ty1 (equivalent to J4) and the Brunhes–Matuyama paleomagnetic boundary. The results show good agreement with the corresponding oxygen isotope (δ18O) profile, with high δ18O intervals dominated by boreal conifers Picea , Abies , Pinus (subgen. Haploxylon ) and Tsuga ( diversifolia ), whereas low δ18O intervals are dominated by temperate conifers Cryptomeria , Taxaceae-Cephalotaxaceae-Cupressaceae and Sciadopitys . In order to confirm pollen-climate relations for the relevant taxa, a modern surface pollen dataset for the Japanese archipelago was consulted. In this analysis, the ratios of Cryptomeria / Picea and temperate/boreal conifers serve as proxies for the 100-kyr glacial/interglacial cycle during the Middle Pleistocene. Distinct signals for marine isotope stages (MIS) 11, 12, 13–15, 16, 17 and 18–19 are recognized in accordance with the tephrochronology and δ18O of the same core. Application of the criteria to an independent pollen record from Lake Biwa provides an integrated pollen stratigraphy for mid-latitude Japan during the past 800 ky. Some degree of uncertainty remains in the chronology of the MIS13–15 interval, relating to the uncertainty in the eruption age of widespread tephra Ks11.  相似文献   

10.
Abstract The Ryoke Belt in the Ikoma Mountains, Nara Prefecture, Japan, is composed mainly of various granitic, intermediate and gabbroic rocks. Igneous activity in this area is divided into two periods, early–middle Jurassic and late Cretaceous, based on isotopic dating. The intermediate plutonic rocks in the Fukihata area are composed of two rock types: Kyuanji quartz diorite and Fukihata tonalite. Rb–Sr whole-rock isochron ages have been determined for both plutonic rocks. Their ages and initial 87Sr/86Sr ratios are as follows: the Kyuanji quartz diorite has an age of 161.0 ± 17.9 Ma with an initial 87Sr/86Sr ratio of 0.70727 ± 0.00007, while the Fukihata tonalite has an age of 121.4 ± 24.6 Ma with an initial 87Sr/86Sr ratio of 0.70753 ± 0.00020. Our chronological results indicate that the Kyuanji quartz diorite belongs to the Jurassic mafic rocks, such as the Ikoma gabbroic mass, while the Fukihata tonalite belongs to the early Cretaceous granitic rocks. Both these intermediate plutonic rocks have different chemical characteristics and were derived from different magmas.  相似文献   

11.
The timing of glacial advances, periglacial phenomena, and the ages of two marker tephras in northern Hokkaido were estimated by OSL dating. It appears that the glacier of Yamunai 2 stage on Rishiri Island expanded between 24 and 15 ka. In northern Hokkaido, OSL ages indicate ice wedge formation during the period 24–18 ka. These results indicate that both the glacial advance and the development of ice wedges were synchronous phenomena relating to the Last Glacial Maximum.  相似文献   

12.
Abstract   Thick Middle (–Upper) Miocene turbiditic deposits filled very deep and narrow foredeep basins formed in the western margin of the Hidaka collision zone in central Hokkaido. Cobble- to boulder-sized clasts of eight monzogranites and a single granodiorite in the Kawabata Formation in the Yubari Mountains area yielded biotite K–Ar ages of 44.4 ± 1.0 to 45.4 ± 1.0 Ma and 42.8 ± 1.1 Ma, respectively. Major elemental compositions of the clasts all fall in the field of S-type granite on an NK/A (Na2O + K2O/Al2O3 in molecule) versus A/CNK (Al2O3/CaO + Na2O + K2O in molecule) diagram, verifying their peraluminous granite character (aluminium saturation index (ASI): 1.12–1.19). These geochronological and petrographical features indicate that the granitoid clasts in the Kawabata Formation correlate with Eocene granitic plutons in the northeastern Hidaka Belt, specifically the Uttsudake (43 Ma) and Monbetsu (42 Ma) plutons. Foredeep basins are flexural depressions developed at the frontal side of thickened thrust wedges. The results presented here suggest that deposition of the Middle Miocene turbidites was coeval with rapid westward up-thrusting and exhumation of the Hidaka Belt. This early mountain building may have occurred in response to thrusting in the Tertiary fold-and-thrust system of central Hokkaido.  相似文献   

13.
Nitrate-contaminated ground water beneath and adjacent to an intensive swine ( Sus scrofa domesticus ) production facility in the Middle Coastal Plain of North Carolina was analyzed for δ15N of nitrate (δ15N-NO3). Results show that the isotopic signal of animal waste nitrogen is readily identifiable and traceable in nitrate in this ground water. The widespread land application of animal wastes from intensive livestock operations constitutes a potential source of nitrogen contamination to natural water throughout large regions of the United States and other countries. The site of the present study has been suspected as a nitrate contamination source to nearby domestic supply wells and has been monitored for several years by government and private water quality investigators through sampling of observation wells, ditches, and streams. δ15N of nitrate allowed direct identification of animal waste-produced nitrate in 11 of 14 wells sampled in this study, as well as recognition of nitrate contributions from non-animal waste agricultural sources in remaining wells.  相似文献   

14.
Tadashi  Usuki  Hiroshi  Kaiden  Keiji  Misawa  Kazuyuki  Shiraishi 《Island Arc》2006,15(4):503-516
Abstract   In order to define the timing of granulite facies metamorphism, sensitive high-resolution ion microprobe (SHRIMP) U-Pb analyses were performed on zircons of three pelitic granulites from the lower metamorphic sequence of the Hidaka Metamorphic Belt, southern central Hokkaido, Japan. Both rounded and prismatic zircons were found in the granulite samples. The rounded zircons had thin (10–20 µm) concentric overgrowth rims on detrital cores, while the prismatic zircons did not have detrital cores. Both the overgrowth rims on the rounded zircons and the entire prismatic zircons were formed under granulite facies metamorphism and consistently yield Latest Oligocene–Early Miocene ages (23.7 ± 0.4 Ma to 17.2 ± 0.5 Ma; 206Pb/ 238U ages ( n  = 31) with low Th/U ratios, mostly <0.1). The internal structure of zircons and their SHRIMP U-Pb ages provide strong evidence in support of the granulite facies event occurring during the Latest Oligocene-Early Miocene. The detrital cores of rounded zircons show a huge variety of ages; Mesoarchean to Paleoproterozoic, Paleozoic to Mesozoic and Paleogene. The interior and marginal portions of the Eurasian continent including cratonic areas are suggested for their source provenances. These wide variations in age suggest that the protolith of the granulites of the lower metamorphic sequence were deposited near the trench of the Eurasian continental margin during Paleogene. The protolith of the lower metamorphic sequence of the Hidaka metamorphic belt was thrust under the upper metamorphic sequence, which had already been metamorphosed in early Paleogene. The Latest Oligocene-Early Miocene Hidaka high-temperature metamorphic event is presumed to have been caused by asthenospheric upwelling during back-arc rifting of the Kuril and Japan basins.  相似文献   

15.
Gwang H.  Lee  Dae C.  Kim  Mi K.  Park  Soo C.  Park  Han J.  Kim  Hyeong T.  Jou  Boo K.  Khim 《Island Arc》2010,19(1):71-85
The Korea Strait shelf mud (KSSM) (Nakdong River subaqueous delta) is the most conspicuous Holocene sedimentary feature in the inner shelf off southeast Korea. Analysis of multi-channel sparker profiles and 14C ages of sediment cores reveals that the KSSM consists of three seismic units at the depocenter (>60 m thick): (i) the thin transgressive bottom (> ca 8000 cal bp ); (ii) thick (>40 m) obliquely progradational middle ( ca 8000– ca 2600 cal bp ); and (iii) thin transgressive top ( ca 2600 cal bp –present) units. The relative base level, predicted from the internal reflection pattern of the KSSM, remained significantly deeper (up to >70 m) than global sealevel during much of the Holocene. The apparent gradual drop (∼20 m) of the relative base level during the deposition of the middle unit, followed by a rise, further suggests that base level does not conform to sealevel and is more sensitive than the relative sealevel is to the local oceanographic regime and processes.  相似文献   

16.
Il-Soo  Kim  Myong-Ho  Park  Byong-Jae  Ryu Kang-Min  Yu 《Island Arc》2006,15(1):178-186
Abstract   Data on the late Quaternary tephra layers, tephrostratigraphy, geochemistry and environment were determined in two sediment cores from the southwestern part of Ulleung Basin (East Sea/Sea of Japan), representing marine-oxygen isotope stages 1–3. The cores consist mainly of muddy sediments that are partly interbedded with silty sands, lapilli tephra and ash layers. The lapilli tephra layers (Ulleung-Oki tephra, 9.3 ka) originating from Ulleung Island consist mainly of massive-type glass shards, whereas the ash layers (Aira-Tanzawa ash, 22.0–24.7 ka) derived from southern Kyushu Island are mainly composed of typical plane-type and bubble-wall glasses that are higher in SiO2 and lower in Na2O + K2O than the lapilli tephra layers. Except for the tephra layers, fine-grained sediments throughout the core sections are mostly of marine origin based on geochemical data (C/N ratios, hydrogen index, S2 peak) and Tmax. In particular, organic carbon contents increased during Termination I, probably as a result of an influx of the deglacial Tsushima Current through the Korea Strait.  相似文献   

17.
We report new mass spectrometric U-series ages for eight Last Interglacial fossil reefs along the continental margin of Western Australia. Corals were selected in growth position from localities that are characterized by apparently low levels of diagenesis and relative tectonic stability so that the fossil reefs provide critical information on Last Interglacial sea-levels without requiring corrections for tectonic movements. In addition, we have improved the constraint on the timing of onset of reef growth by recovering drill core coral from the base of the reefs. Uranium and thorium isotopes were measured with high levels of precision, leading to improvements in age resolution and allowing samples which have undergone diagenetic exchange of uranium and thorium to be more easily identified and discarded. These data supplement our previous results for Rottnest Island and Leander Point, leading to more than seventy mass spectrometric U-series ages from which constraints can be placed on the timing, duration and character of the Last Interglacial sea-level highstand. Reliable ages show that reef growth started contemporaneously at 128 ± 1 ka along the entire Western Australian coastline, while relative sea-levels were at least 3 m above the present level. Because Western Australia is located far from the former Penultimate Glacial Maximum ice sheets and are not significantly effected by glacial unloading, these data constrain the timing of onset of the Last Interglacial period to 128 ± 1 ka, assuming reef growth started soon after sea-level approached interglacial levels. A unique regressive reef sequence at Mangrove Bay constrains the timing of termination of the Last Interglacial period to 116 ± 1 ka. The major episode of reef building, however, both globally and locally along the Western Australian coast, is restricted to a very narrow interval occurring from 128 ka and 121 ka, suggesting that global ocean surface temperatures were warm and/or sea-levels were stable enough to allow prolific reef growth only during the earlier part of the Last Interglacial.  相似文献   

18.
Naotatsu  Shikazono 《Island Arc》1994,3(1):59-65
Abstract Chemical data on hydrothermally altered volcanic rocks from a green tuff belt in Japan indicate that the average rate of Mg removal from seawater due to seawater cycling through back-arc basins in the circum-Pacific region during the early to middle Miocene (25–15 Ma) is estimated to be 2.6±1 × 1013 g/year. This is similar to that through present-day mid-ocean ridges (2.4 × 1013 g/year). Hydrothermal fluxes of K, Ca and Si are calculated to be 4.2±1.6 × 1013 g/year, 4.3±1.7×1013 g/year and 1.0±0.4 × 1014 g/year, respectively. These calculated results indicate that the seawater/volcanic rocks interaction at subduction-related tectonic settings have to be taken into account in considering the geochemical mass balance of seawater over geologic time.  相似文献   

19.
Kazuhiko  Fujita  Hiroaki  Shimoji  Koichi  Nagai 《Island Arc》2006,15(4):420-436
Abstract A new method for reconstructing depositional environments of larger foraminifera‐bearing limestones is proposed. First, depth and spatial distributions of empty tests of 10 foraminiferal taxa in a 1–2 mm size fraction were examined using 32 surface sediment samples collected from depths shallower than 200 m, located to the west of Miyako Island, Ryukyu Islands, northwest Pacific. Distributional ranges of empty tests in the 1–2 mm size fraction appear to be more limited than those including other size fractions in previous reports, partly because larger empty tests of each taxon are less easily transported than smaller ones. Multivariate analyses (Q‐mode cluster analysis and non‐metric multidimensional scaling ordination) based on binary (presence/absence) data of the 10 taxa delineate four sample groups, each of which corresponds to different depositional environments: nearshore zone/bay inlet; back‐reef to fore‐reef; outer shelf to shelf slope; and shelf slope distant from coral reefs. Next, these modern data were applied to reconstruct the depositional environment of a rock section distributed in the Shiratorizaki area (Irabu Island, Ryukyu Islands), which consists of larger foraminiferal limestone of the Pleistocene Ryukyu Group. Multivariate analyses were performed on the fossil plus the modern foraminiferal data to explore the possible relationship of the fossil associations with variations in modern associations, demonstrating that the fossil foraminiferal associations resemble the modern outer shelf associations. The modern analog technique was also applied to estimate paleobathymetry using fossil foraminiferal data. The results indicate that the section studied was deposited in outer shelf environments at depths between 53.5 and 98.6 m. These paleoenvironmental interpretations are consistent with previous studies based on sedimentary facies and the computer‐based expert system. The modern dataset and methods used in our work would be particularly useful for paleoenvironmental reconstructions of Quaternary reef and shelf carbonates along active margins of the northwest Pacific.  相似文献   

20.
Kaoru  Sugihara  Naoto  Masunaga  Kazuhiko  Fujita 《Island Arc》2006,15(4):437-454
Abstract The taxonomic diversity of hermatypic corals decreases with increasing latitude, which correlates with sea‐surface temperatures. However, little is known about latitudinal changes in the taxonomic diversity and biogeographic patterns of larger benthic foraminifera, although their physiological requirements are similar to those of hermatypic corals because of their symbiotic relationships with microalgae. The present study examined how the abundance and taxonomic composition of larger foraminiferal assemblages in shallow‐water reef sediments change with latitude along the Ryukyu Islands (Ryukyus), which are located near the northern limit of coral‐reef distributions in the western Pacific Ocean. Three islands from different latitudes in the Ryukyus were selected to investigate latitudinal changes in larger foraminiferal assemblages: Ishigaki Island (24°20′N, 124°10′E), Kudaka Island (26°09′N, 127°54′E) and Tane‐ga‐shima Island (30°20′N, 131°E). Four sediment samples were taken at each of three topographic sites (beach, shallow lagoon and reef crest) on the reef flat of each island. Foraminiferal tests of a 2.0‐ to 0.5‐mm size fraction were selected, identified and counted. The variations in foraminiferal abundance in reef sediments from three latitudinally different islands exhibit two contrasting trends along reef flats: a shoreward decrease on Ishigaki and Tane‐ga‐shima Islands and a shoreward increase on Kudaka Island. A total of 25, 24 and 13 foraminiferal taxa were identified in Ishigaki, Kudaka and Tane‐ga‐shima Islands, respectively. Baculogypsina sphaerulata, Neorotalia calcar and Amphistegina spp. were dominant (i.e. >3% of foraminiferal assemblages) in the three islands. Calcarina gaudichaudii and Calcarina hispida were common on Ishigaki and Kudaka Islands but were absent on Tane‐ga‐shima Island. Larger foraminiferal assemblages from three different reef‐flat environments on Ishigaki Island can be distinguished, whereas those from the three environments on Kudaka and Tane‐ga‐shima Islands are similar in composition. These latitudinal changes in larger foraminiferal assemblages in reef sediments may possibly be caused by variations in the topography of reef flats, distributions and standing crops of living foraminifers on reef flats, and the northern limit of some calcarinid species in the northern Ryukyus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号