首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Robust, independent age constraints on the absolute timing of climate events based on the U-series dating of fossil coral are sparse before the last glacial cycle. Using multiple-collector inductively coupled plasma mass spectrometry with multiple-Faraday protocols, we are able to date ~ 600 ka samples with an uncertainty of better than ± 15 ka (2σ), representing a three-fold improvement in precision compared with previous techniques. Using these methods, we report U-series measurements for a suite of > 500 thousand year old (ka) corals from Henderson Island, an emergent atoll in the south-central Pacific Ocean. The fossil corals show extraordinarily little diagenetic alteration for their age and the best-preserved sample yields a U-series age of 600 ± 15 ka (2σ), which overlaps with the timing of the warm Marine Isotope Stage (MIS) 15 interglacial. The open-system model of Villemant and Feuillet [Villemant B. and Feuillet N. (2003) Dating open systems by the 238U–234U–230Th method: application to Quaternary reef terraces. Earth and Planetary Science Letters 210(1–2), 105–118.] and the linear regression (or open-system isochron) is clearly limited for such old samples. However, the open-system model developed by Thompson et al. [Thompson W.G., Spiegelman M.W., Goldstein S.L., and Speed R.C. (2003) An open-system model for U-series age determinations of fossil corals. Earth and Planetary Science Letters 210(1–2), 365–381.] appears to reliably correct for open-system effects in roughly half of the corals, giving a MIS 15 origin for these. Thus the data provide evidence that the systematic addition of 230Th and 234U through α-recoil is a dominant open-system process occurring in the Henderson Island fossil reef system. Several coral samples yield significantly older Thompson et al. open-system ages between 650 and 750 ka. The uncertainty on these ages (typically ± 30 kyrs) is too great for precise assignment but most data overlap with the MIS 17 interglacial. The reliability of these ages is currently unclear. It is shown that separate aliquots of the same coral can yield different Thompson model ages. Therefore, there appear to be additional diagenetic mechanisms that create further anomalous excursions in the U-series systematics, limiting the reliability of the Thompson et al. open-system model.  相似文献   

2.
Jeju Island, the largest Quaternary volcanic island in Korea, has formed mostly since the early Pleistocene, but its latest chronology of volcanism and sedimentation is still poorly constrained. Here we report optically stimulated luminescence (OSL) ages for two hydromagmatic volcanoes on the southwestern coast of Jeju Island, i.e., the Songaksan and Suwolbong tuff rings. The basaltic tuffs of these volcanoes contain abundant quartz sands from underlying marine sedimentary sequences. Two samples collected from the middle part of the Songaksan Tuff yielded highly reproducible quartz single-aliquot regenerative-dose (SAR) OSL ages of 7.0±0.3 ka, providing the first direct age estimate of Holocene volcanism in Jeju Island. The quartz OSL age estimate of 5.1±0.3 ka for the younger reworked basaltic tuff (the Hamori Formation) is comparable with previous radiocarbon and U-series disequilibrium dating of fossil mollusk shells. Two samples from the Suwolbong Tuff show quartz OSL age estimates of 18.3±0.7 and 18.6±0.9 ka, which are identical within error ranges and younger than the quartz OSL age estimate of 23.2±1.0 ka for the underlying Gosan Formation. This study confirms that volcanism and attendant sedimentation were active in Jeju Island until very recently.  相似文献   

3.
The Three Gorges and Western Hubei area in the geographic central part of China was a potential migration corridor for early hominin and mammals linking South and North China during the Pleistocene period. Some key early hominin sites are known in this region where limestone cave and fissure sites are numerous but difficult to date as beyond the dating range of OSL and mass spectrometry U-series method. Here, we report radiometric dating study for such a hominin site, Meipu (Hubei Province), by coupled ESR and U-series dating of nine fossil teeth and cosmogenic 26Al/10Be burial dating of one quartz sediment. The burial age calculated by simple burial model (573 ± 266 ka) gives a minimum age constraint of the sediment. The fossil dating provided two main age groups at 541 ± 48 ka and 849 ± 39 ka, the older age group is in agreement with the U-series age (>630 ka) of the flowstone overlying the fossil layer and the paleomagnetic data which placed the Brunhes-Matuyama boundary in the fossil layer. The reason of this age difference is probably caused by the U-content discrepancy in the enamel of the dated fossil samples. This study exhibits the limitation of ESR/U-series fossil dating and the importance of using multiple dating approach when it is possible in order to identify the problematic ages.  相似文献   

4.
Radiocarbon calibration beyond the extent of tree-ring records depends on U-series dating of fossil corals or speleothem, both of which can provide independent calendar ages. Less direct methods rely on layer counting and comparison with other well-dated records. In spite of considerable effort to provide a reliable radiocarbon calibration curve beyond 25,000 years, the majority of the data show large atmospheric radiocarbon peaks which are inconsistent both in magnitude and timing between different determinations. The results of the most recent work [Chiu, T.-C., Fairbanks, R.G., Mortlock, R.A., Bloom, A.L., 2005. Extending the radiocarbon calibration beyond 26,000 years before present using fossil corals. Quaternary Science Reviews 24 (16–17), 1797–1808], from Araki Island fossil corals, indicate a monotonic variation from about 33 to 49 ka, with no radiocarbon peaks, but with some gaps in the data. The difference between this and previous results, from fossil corals, has been attributed to selection of better-quality samples and rigorous analytical methods. However, previous results from Huon Peninsula [Yokoyama, Y., Esat, T.M., Lambeck, K., Fifield, L.K., 2000. Last ice age millennial scale climate changes recorded in Huon Peninsula corals. Radiocarbon 42 (3), 383–401; Cutler, K.B., Gray, S.C., Burr, G.S., Edwards, R.L., Taylor, F.W., Cabioch, G., Beck, J.W., Cheng, H., Moore, J., 2004. Radiocarbon calibration and comparison to 50 kyr BP with paired 14C and 230Th dating of corals from Vanuatu and Papua New Guinea. Radiocarbon 46 (3), 1127–1160] show radiocarbon peaks exclusively located within the gaps in the Araki data. The timing of the gaps are not random, but appear to be related to severe climate and sea-level variations associated with Heinrich events initiated in the North Atlantic. We propose that the Huon and Araki data sets are complementary rather than exclusive and that the absence of coral growth at Araki Island during Heinrich events presumably reflect local adverse conditions for coral growth.  相似文献   

5.
Coral islands formed of largely unconsolidated sands only a few metres above sea level are thought to be particularly vulnerable to sea-level rise consequent upon global warming. However, scenarios which predict catastrophic flooding and loss of island area need reassessment, particularly in the light of the continued downwards revision of projected rates of future sea-level rise. Revised questions concern the interactions between reef growth and sea-level change, biophysical constraints on coral growth, and the importance to reef systems of potential changes in the magnitude, frequency and location of tropical cyclones and hurricanes. It is clear that most reefs have the growth potential to meet even the highest of future sea-level rise scenarios, but too little is known about physiological and physical constraints to reef growth to adequately evaluate the importance of these two factors in constraining this potential at the present time. Future sea-level rise in the tropical oceans, and coral reef responses, will take place against a backdrop of inter-regional differences in Holocene sea levels, resulting from the varying interaction of eustatic and hydro-isostatic processes. These differences have generated varying constraints on the development of modern reefs and varying inherited topographies upon which future sea-level changes will be superimposed. These controls are particularly important in assessing differences in vulnerability to future sea-level rise for reef islands in the Pacific Ocean and the Caribbean Sea.  相似文献   

6.
Raised marine terraces and submerged insular shelves are used through an integrated approach as markers of relative sea level changes along the flanks of the Salina volcanic island (Aeolian Arc, southern Italy) for the purpose of evaluating its crustal vertical deformation pattern through time. Paleo sea level positions are estimated for the terrace inner margins exposed subaerially at different elevations and the erosive shelf edges recognized offshore at different depths. Compared with the eustatic sea levels at the main highstands (for the terraces) and lowstands (for the shelf edges) derived from the literature, these paleo sea level markers allowed us to reconstruct the interplay among different processes shaping the flanks of the island and, in particular, to quantify the pattern, magnitudes and rates of vertical movements affecting the different sectors of Salina since the time of their formation. A uniform uplift process at rates of 0.35 m ka−1 during the Last Interglacial is estimated for Salina (extended to most of the Aeolian Arc) as evidence of a regional (tectonic) vertical deformation affecting the sub-volcanic basement in a subduction-related geodynamic context. Before that, a dominant subsidence at rates of 0.39–0.56 m ka−1 is instead suggested for the time interval between 465 ka (MIS 12) and the onset of the Last Interglacial (MIS 5.5, 124 ka). By matching the insular shelf edges with the main lowstands of the sea level curve, a relative age attribution is provided for the (mostly) submerged volcanic centres on which the deepest (and oldest) insular shelves were carved, with insights on the chronological development of the older stages of Salina and the early emergence of the island. The shift from subsidence to uplift at the Last Interglacial suggests a major geodynamic change and variation of the stress regime acting on the Aeolian sub-volcanic basement. © 2019 John Wiley & Sons, Ltd.  相似文献   

7.
Palaeolithic sites associated with the Eemian Interglacial (MIS 5e) are very rare in NW Europe, and especially in Northern France, where their preservation is restricted to very specific geological contexts, in association with carbonated tufa (Caours) or peat deposits (Waziers). In order to check the reliability of ESR/U-series method to date teeth recovered from archaeological levels in such specific geological environments, teeth were sampled on these two Middle Palaeolithic sites and systematic in situ dosimetry was performed using portable gamma spectrometer. The ESR/U-series ages obtained on the Caours site are very homogeneous allowing the calculation of a mean age equal to 125 ± 11 ka, in agreement with the geological age, mammal's association and other available geochronological data (U-series on tufa carbonate, TL on burnt flints, OSL on sediments), despite a relatively heterogeneous dosimetric environment (gamma dose rate ranging between ca 200–450 μGy/a). At Waziers, reducing (water logging) environment linked to the peat leads to very specific U-series data of the analysed teeth (U content lower than 0.1 ppm in all the dental tissues, evidence of leaching in some tissues), but the mean ESR/U-series age, 129 ± 4 ka, is also in agreement with the available geological and palaeoenvironmental data indicating that the dated teeth were associated with Late Glacial deposits prior to the climatic interglacial optimum. These two case studies then confirm the reliability of ESR/U-series method to date with good reliability and accuracy the archaeological levels linked to such relatively short climatic events (ca 10 ka).  相似文献   

8.
Keiichi  Sasaki  Akio  Omura  Tetsuo  Miwa  Yoshihiro  Tsuji  Hiroki  Matsuda  Toru  Nakamori  Yasufumi  Iryu  Tsutomu  Yamada  Yuri  Sato  Hiroshi  Nakagawa 《Island Arc》2006,15(4):455-467
Abstract   High-resolution seismic reflection profiles delineated the distribution of mound-shaped reflections, which were interpreted as reefs, beneath the insular shelf western off Irabu Island, Ryukyus, southwestern Japan. A sediment core through one of the mounded structures was recovered from the sea floor at a depth of −118.2 m by offshore drilling and was dated by radiometric methods. The lithology and coral fauna of the core indicate that the mounded structure was composed of coral–algal boundstone suggesting a small-scaled coral reef. High-precision α-spectrometric 230Th/234U dating coupled with calibrated accelerator mass spectrometric 14C ages of corals obtained reliable ages of this reef ranging from 22.18 ± 0.63 to 30.47 ± 0.98 ka. This proves that such a submerged reef was formed during the lowstand stage of marine oxygen isotope stages 3–2. The existence of low-Mg calcite in the aragonitic coral skeleton of 22.18 ± 0.63 ka provides evidence that the reef had once been exposed by lowering of the relative sealevel to at least −126 m during the last glacial maximum in the study area. There is no room for doubt that a coral reef grew during the last glacial period on the shelf off Irabu Island of Ryukyus in the subtropical region of western Pacific.  相似文献   

9.
Discovered accidently during factory building construction works, the Middle Palaeolithic site of Biache-Saint-Vaast (Pas-de-Calais, France) was excavated from 1976 to 1982 by a team of Lille University directed by Alain Tuffreau. An abundant archaeological and paleontological material, including two human skulls, was there recovered from fossil alluvial deposits of the Scarpe River. In order to determine the ages of these remains, the ESR/U-series method was applied on bone and teeth. As the U-series data obtained of the main part of the analyzed tissues do not allow the use of the classical US-ESR model, the recently proposed AU-ESR model, taking into account if necessary U-leaching from some of the tissues, was used to calculate combined ESR/U-series ages for these samples. The obtained ages suggest a MIS7 attribution to the faunal remains and permit an age of ca 240 ka to be assigned for the human remains and associated archaeological material, in accordance with the stratigraphic data and the large mammal associations.  相似文献   

10.
Recently, alternative models to estimate the age of diagenetically altered fossil reef corals have been presented based on either redistribution of U or its immediate daughters 234Th and 230Th. Here, we present three methods to estimate the uncertainty of ages derived using an amended version of our coral isochron method [Scholz et al., 2004. U-series dating of diagenetically altered fossil reef corals. Earth and Planetary Science Letters 218, 163–178], which is based on addition/loss of U. The obtained uncertainties are substantially larger than those previously published and should, in general, be more reliable. The isochron method yields larger uncertainties than alternative models based on Th redistribution due to -recoil processes. However, comparison of model open-system ages based on such redistribution of U-series daughters for different sub-samples from an individual coral specimen shows that the smaller errors derived with these models cannot account for the observed variability. We recognise that none of the available models is applicable to all corals, probably reflecting different diagenetic processes even in different sub-samples from one coral specimen. To better understand the diagenetic processes and precisely constrain the uncertainties of the ages derived from diagenetically altered corals, the application of all available models is recommended.  相似文献   

11.
The legacy of multiple marine transgressions is preserved in a complex morphology of ridges, mounds and reefs on the Carnarvon continental shelf, Western Australia. High-resolution multibeam sonar mapping, underwater photography and sampling across a 280 km2 area seaward of the Ningaloo Coast World Heritage Area shows that these raised features provide hardground habitat for modern coral and sponge communities. Prominent among these features is a 20 m high and 15 km long shore-parallel ridge at 60 m water depth. This ridge preserves the largely unaltered form of a fringing reef and is interpreted as the predecessor to modern Ningaloo Reef. Landward of the drowned reef, the inner shelf is covered by hundreds of mounds (bommies) up to 5 m high and linear ridges up to 1.5 km long and 16 m high. The ridges are uniformly oriented to the north-northeast and several converge at their landward limit. On the basis of their shape and alignment, these ridges are interpreted as relict long-walled parabolic dunes. Their preservation is attributed to cementation of calcareous sands to form aeolianite, prior to the post-glacial marine transgression. Some dune ridges abut areas of reef that rise to sea level and are highly irregular in outline but maintain a broad shore-parallel trend. These are tentatively interpreted as Last Interglacial in age. The mid-shelf and outer shelf are mostly sediment covered with relatively low densities of epibenthic biota and have patches of low-profile ridges that may also be relict reef shorelines. An evolutionary model for the Carnarvon shelf is proposed that relates the formation of drowned fringing reefs and aeolian dunes to Late Quaternary eustatic sea level.  相似文献   

12.
Abstract Coral reefs are tropic to subtropic, coastal ecosystems comprising very diverse organisms. Late Quaternary reef deposits are fossil archives of environmental, tectonic and eustatic variations that can be used to reconstruct the paleoclimatic and paleoceanographic history of the tropic surface oceans. Reefs located at the latitudinal limits of coral‐reef ecosystems (i.e. those at coral‐reef fronts) are particularly sensitive to environmental changes – especially those associated with glacial–interglacial changes in climate and sealevel. We propose a land and ocean scientific drilling campaign in the Ryukyu Islands (the Ryukyus) in the northwestern Pacific Ocean to investigate the dynamic response of the corals and coral‐reef ecosystems in this region to Late Quaternary climate and sealevel change. Such a drilling campaign, which we call the COREF (coral‐reef front) Project, will allow the following three major questions to be evaluated: (i) What are the nature, magnitude and driving mechanisms of coral‐reef front migration in the Ryukyus? (ii) What is the ecosystem response of coral reefs in the Ryukyus to Quaternary climate changes? (iii) What is the role of coral reefs in the global carbon cycle? Subsidiary objectives include (i) the timing of coral‐reef initiation in the Ryukyus and its causes; (ii) the position of the Kuroshio current during glacial periods and its effects on coral‐reef formation; and (iii) early carbonate diagenetic responses as a function of compounded variations in climate, eustacy and depositional mineralogies (subtropic aragonitic to warm‐temperate calcitic). The geographic, climatic and oceanographic settings of the Ryukyu Islands provide an ideal natural laboratory to address each of these research questions.  相似文献   

13.
Marine and eolian carbonate deposits, grouped under the name “Tamala Limestone”, have been investigated along thousands of kilometers of coastal Western Australia (WA). Relative-age diagenetic features of carbonate sand dunes or “eolianites” indicate that coastal ridges decrease in age seaward, reflecting coastal accretion during successive sea-level stands. Yellow- to red-stained quartz sands are associated with eolianites as pits, lenses, extensive beds, and even 40-m-high dunes.A regional survey using whole-rock and land snail amino acid epimerization geochronology confirms the eolianite succession and provides a means of correlating widespread deposits along a steep climatic gradient and 16° of latitude. AMS 14C and uranium–thorium (U/Th) ages provide independent radiometric calibration of the amino acid ratios, and eolianite ages can be estimated using a parabolic kinetic model.Over 90% of the sampled eolianite deposits comprise Aminozones A, C, E (125 ka), F?, G, and H, and correlate with interglacials from <10 ka (Holocene) to ca. 500 ka. In contrast, at the type locality of the Tamala Limestone along the Zuytdorp Cliffs, the upper eolianite-paleosol units are characterized by advanced stages of cavernous weathering, pedogenesis, and recrystallization. In the same units, sediment and snail samples generally yield very low or non-detectable levels of amino acids. These factors along with the stratigraphic complexity of the deposits reflect an age much greater than a large majority of sites along the WA coastline. These findings encourage a revision of the existing classification and nomenclature of Quaternary carbonate deposits in WA, as well as a reexamination of the underlying mechanisms related to the formation and emplacement of both carbonate and quartz dunes.  相似文献   

14.
Fossil oyster reefs are indicators of past sea levels, and their formation is usually dated by means of radiocarbon. However, radiocarbon dating of the shells from coastal areas may be complicated by the varying sources of carbon. Here we applied optical dating methods to date the samples from above and below a fossil oyster bed in a section on the coast of Bohai Bay, China. The optical ages of the sediments were used to constrain the oyster bed. Single-aliquot regenerative-dose procedures using the OSL signal from fine grain quartz, the IRSL and post-IR OSL signals from polymineral fine grains were employed to determine equivalent dose (De). The behaviors of the different luminescence signals from quartz and polymineral grains during De measurements were examined. The results showed that the quartz OSL signal is more reliable than the polymineral IRSL and post-IR OSL signals with respect to dating for these coastal samples. The optical ages indicated that the oyster reef formed between ca. 6.2 and 5.0 ka.  相似文献   

15.
Yumidong (Corn Cave) is a newly discovered Paleolithic site in the Three Gorges region of central China. Numerous Paleolithic artifacts have been excavated from the sedimentary deposits of the cave in association with faunal remains attributed to the Middle-Late Pleistocene Ailuropoda-Stegodon fauna of southern China. To establish the chronology of the sedimentary sequence (>5 m thick), 14C dating was applied to bone and charcoal samples (n = 6); the U-series method was used to date in situ precipitated speleothems (n = 12), transported speleothem samples (n = 6) and 18 subsamples of a fossil tooth; and the coupled ESR/U-series method was used to date fossil teeth (n = 6). The derived dates were combined using a hierarchical Bayesian approach to generate a unified chronostratigraphy for the Yumidong sequence. In our Bayesian analyses, the 14C and coupled ESR/U-series dates were considered to provide direct age estimates for the target layers, while the U-series dates of the in situ precipitated speleothems and fossil tooth were used as minimum age constraints and those of the transported speleothem fragments as maximum age constraints. The Bayesian analyses provided robust time intervals for the archeological layers: L2-Upper (14–23 ka), L2-Lower (27–63 ka), L3 (106–171 ka), L4 (140–192 ka), L10 (157–229 ka), L11 (181–256 ka), and L12 (214–274 ka) with a probability of 95%, allowing the establishment of a ∼300 ka long geological and archeological history for the Yumidong site and placing it as a reference site for Paleolithic cultural evolution in the Three Gorges region from the late Middle Pleistocene to Late Pleistocene.  相似文献   

16.
The timing of glacial advances, periglacial phenomena, and the ages of two marker tephras in northern Hokkaido were estimated by OSL dating. It appears that the glacier of Yamunai 2 stage on Rishiri Island expanded between 24 and 15 ka. In northern Hokkaido, OSL ages indicate ice wedge formation during the period 24–18 ka. These results indicate that both the glacial advance and the development of ice wedges were synchronous phenomena relating to the Last Glacial Maximum.  相似文献   

17.
Multidisciplinary analysis including paleomagnetic, sedimentologic, sea-level change, luminescence dating and palynologic research was performed on a 25 m long orientated core taken at Rutten, close to Eemian key localities in the Netherlands. The main goal of our research was to test a possible delayed onset of temperate conditions in this region compared to Southern Europe, occurring within the Last Interglacial. The sediments revealed the presence of the paleomagnetic Blake Event in ca. 10 m of lower-deltaic floodbasin sediments that contain a pollen record covering the Eemian. The position of the Blake Event in relation to the pollen stratigraphy concurs with the earlier studied Neumark Nord 2 site. Paleomagnetic correlation to core MD95-2042 off SW Iberia indicates ca. 5 kyr diachroneity between the pollen-based onset of temperate interglacial conditions between northern and southern Europe. The onset of the Eemian in north-western and central Europe (ca. 121.0 ka) post-dates the Marine Isotope Stage 6/5e transition by ca. 10 kyr. In addition, the Rutten data provide evidence for a relatively long duration of the Blake Event of at least 8 kyr. The late onset of the temperate conditions that define the base of the Eemian, imply that NW Europe with the Eemian type area is not the most suited region to define the beginning of the Last Interglacial and Late Pleistocene for global chronostratigraphic use.  相似文献   

18.
In order to derive a radiometric age marker for the end of the penultimate glacial–interglacial transition, we compiled published U-series isotope measurements on corals from the period extending from stage 6 to the middle of the last interglacial, and computed the corresponding open-system ages using Thompson et al. model (Thompson, W.G., Spiegelman, M.W., Goldstein, S.L., Speed, R.C., An open-system model for U-series age determinations of fossil corals. Earth Planet. Sci. Lett. 210 (2003) 365–381). We obtain a global mean age of 126 calendar kyr BP (ka) ± 1.7kyr (2σ) for the beginning of the last interglacial sea level high stand. After showing that the phase relationships observed between changes in sea level, North Atlantic benthic and planktonic foraminifera oxygen isotopic records, and atmospheric methane over the last deglaciation were likely also valid over the penultimate deglaciation, we derive an age of 131.2ka ± 2kyr (2σ) for the abrupt increase in atmospheric CH4 and North Atlantic surface temperature marking the end of the penultimate glacial–interglacial transition. This age is consistent with U–Th dates of the penultimate glacial–interglacial transition recorded in speleothems from sites where speleothems isotopic records are synchronous with North Atlantic temperature records over the last deglaciation. Finally, we show that the phase obtained between the climatic response and northern hemisphere summer insolation is not constant from Termination II to Termination I, implying that northern hemisphere summer insolation alone cannot explain the timing of terminations.  相似文献   

19.
Ningaloo Reef, located along the northwest coast of Australia, is one of the longest fringing coral reefs in the world extending ~300 km. Similar to other fringing reefs, it consists of a barrier reef ~1–6 km offshore with occasional gaps, backed by a shallow lagoon. Wave breaking on the reef generates radiation stress gradients that produces wave setup across the reef and lagoon and mean currents across the reef. A section of Ningaloo Reef at Sandy Bay was chosen as the focus of an intense 6-week field experiment and numerical simulation using the wave model SWAN coupled to the three-dimensional circulation model ROMS. The physics of nearshore processes such as wave breaking, wave setup and mean flow across the reef was investigated in detail by examining the various momentum balances established in the system. The magnitude of the terms and the distance of their peaks from reef edge in the momentum balance were sensitive to the changes in mean sea level, e.g. the wave forces decreased as the mean water depth increased (and hence, wave breaking dissipation was reduced). This led to an increase in the wave power at the shoreline, a slight shift of the surf zone to the lee side of the reef and changes in the intensity of the circulation. The predicted hydrodynamic fields were input into a Lagrangian particle tracking model to estimate the transport time scale of the reef-lagoon system. Flushing time of the lagoon with the open ocean was computed using two definitions in renewal of semi-enclosed water basins and revealed the sensitivity of such a transport time scale to methods. An increase in the lagoon exchange rate at smaller mean sea-level rise and the decrease at higher mean sea-level rise was predicted through flushing time computed using both methods.  相似文献   

20.
The loess-paleosol sequence on the Chinese Loess Plateau provides a unique archive that records climate change in East Asia in the Quaternary, yet absolute dating of the loess deposits is challenging due to the lack of directly datable materials. Fossil land snail shells, which are made from aragonite, are widely preserved in the loess deposits and have long been used to reconstruct past environmental changes. U-series dating of fossil land snail shells has the potential to provide a route for absolute dating of the loess deposits but remains largely unexplored. In this study, we present the first systematic investigation on the U-series isotope geochemistry as well as the early diagenetic imprints of fossil land snail shells (Cathaica sp.) from the Mangshan loess-paleosol sequence in Henan province, central China. Several geochemical techniques, including Raman microscopy, SEM, LA-ICPMS, LA-MC-ICPMS, solution-MC-ICPMS, and AMS 14C dating, were employed to investigate the mineralogy, chemical and isotopic compositions of both modern and fossil snail shells to micrometer level. Our results show that the fossil Cathaica sp. shells are overall characterized by a higher degree of porosity and elevated contents of organic matter compared to live-collected shells of the same species. The layers with higher porosity and organic matter content in the fossil Cathaica sp. shell are also found to be enriched in Na, Mg, Mn, Ba, and U, indicating diffusion and adsorption of these elements by specific surface binding sites of either aragonitic lattice or organic compounds of the fossil shell. Combining in-situ measurements using LA-MC-ICPMS with solution U-series determination, we further demonstrate that fossil Cathaica sp. shell is relatively homogeneous regrading both [234U/238U] and [230Th/238U] values although the distribution of U in the fossil shell is sample-specific. The comparison of different dating results suggests that the calculated apparent closed system U–Th ages are all systematically younger (∼6000 to 13,000 years) than the corresponding shell 14C ages and quartz SAR (single-aliquot regenerative-dose) ages from the Mangshan section. We suggest that the underestimation of U–Th ages of fossil Cathaica sp. shells is very likely caused by diagenetic uptake of U that started immediately after the burial of the shell and effectively ceased when the fossil shell was isolated from the pore waters due to persistent deposition of eolian dust at the Mangshan section. Our work on both modern and fossil Cathaica sp. shells thus provides detailed morphological and geochemical characterization for the diagenetic alteration of fossil snail shells and suggests that U-series dating of fossil land snail shells may provide age constraints for dust deposits in the semi-arid region although the timing of early diagenetic U-uptake by the fossil shells need to be better quantified for reliable age determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号