首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   2篇
地质学   2篇
海洋学   2篇
  2018年   1篇
  2014年   1篇
  2011年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Bathymetric mapping and observations of the seafloor using a remotely operated vehicle (ROV, Hyper‐Dolphin 3K) were carried out on the slopes of the Miyako‐Sone submarine platform, east of Miyako‐jima in the Ryukyu Islands, northwestern Pacific Ocean. The bathymetric map indicates that terraces are present at water depths of approximately 140 m, 330 m, 400 m, and 680 m on the northwestern slope of the platform. A number of NW–SE trending lineaments, probably faults, extend perpendicular to the axis of the Ryukyu Island Arc. Two ROV surveys were conducted at water depths ranging from 519 m (on the slope) to 121 m (shallowest part of the platform). The surveys revealed that well‐indurated carbonate rocks are exposed at terrace margins and on upper slopes, and that the lower slopes are covered with modern sediments consisting of unconsolidated, coarse‐sand‐sized bioclastic carbonates. Calcareous nannofossils from the well‐indurated carbonate rocks indicate a Middle–Late Pleistocene age, which suggests that the rocks correlate with the Quaternary reef and fore‐reef deposits of the Ryukyu Group (Ryukyu Limestone) on the Ryukyu Islands. No siliciclastic deposits corresponding to the upper Miocene–lower Pleistocene Shimajiri Group (as exposed on Okinawa‐jima and Miyako‐jima islands) were recovered during the surveys. Coeval well‐indurated carbonate rocks, all of which formed in a similar sedimentary environment, have been downthrown towards the west due to displacements on the western sides of normal faults. Subsidence of the Miyako‐Sone submarine platform was the result of large vertical displacements on such normal faults. The timing of initial subsidence cannot be tightly constrained, but the presence of the youngest limestone at progressively lower levels towards the west suggests the subsidence continued until after 0.265 Ma.  相似文献   
2.
The Kuroshima Knoll is about 26 km south of Ishigaki Island in the southern part of the Ryukyu Arc. The area is considered to be the source area of “The 1771 Yaeyama Earthquake Tsunami”, which was due to the submarine landslide caused by an earthquake. It has been cleared from some investigations using “Dolphin 3K” and “Shinkai 2000” that there are large-scale dead Calyptogena colonies, many gravels of fallen dolomite chimneys and carbonates on the top of the Knoll [Matsumoto, T., Uechi, C., Kimura, M., 1997; Machiyama, H., Matsumoto, T., Matsumoto, R., Hattori, M., Okano, M., Iwase, R., Tomaru, H., 2001b.]. Carbonates of Kuroshima Knoll have various shapes and macroscopic textures. These have been classified into 4 types; shell crust (pavement), chimney, burrow, and nodule. It is clear that all chimney and burrow carbonates are composed of dolomite, while shell curst and nodule are composed of calcite, sometimes both calcite and dolomite. These carbonates are considered to have been formed by cold seep, because they are characterized by the light carbon isotopic ratio (semi-biogenic) and the heavy oxygen isotopic ratio. This suggests that methane hydrate layers develop under this survey area and the water that has the heavy oxygen and the light carbon isotopic ratio is derived from the dissociation of methane hydrate.  相似文献   
3.
Multi-scale reflection seismic data, from deep-penetration to high-resolution, have been analyzed and integrated with near-surface geophysical and geochemical data to investigate the structures and gas hydrate system of the Formosa Ridge offshore of southwestern Taiwan. In 2007, dense and large chemosynthetic communities were discovered on top of the Formosa Ridge at water depth of 1125 m by the ROV Hyper-Dolphin. A continuous and strong BSR has been observed on seismic profiles from 300 to 500 ms two-way-travel-time below the seafloor of this ridge. Sedimentary strata of the Formosa Ridge are generally flat lying which suggests that this ridge was formed by submarine erosion processes of down-slope canyon development. In addition, some sediment waves and mass wasting features are present on the ridge. Beneath the cold seep site, a vertical blanking zone, or seismic chimney, is clearly observed on seismic profiles, and it is interpreted to be a fluid conduit. A thick low velocity zone beneath BSR suggests the presence of a gas reservoir there. This “gas reservoir” is shallower than the surrounding canyon floors along the ridge; therefore as warm methane-rich fluids inside the ridge migrate upward, sulfate carried by cold sea water can flow into the fluid system from both flanks of the ridge. This process may drive a fluid circulation system and the active cold seep site which emits both hydrogen sulfide and methane to feed the chemosynthetic communities.  相似文献   
4.
Current-generated bedforms were found on sandy seafloor at water depths of 200–400 m on the northern Izu Ridge, where the Kuroshio Current encounters and passes over the ridge. The observed bedforms include large dunes and sand ribbons and are interpreted to be products of present-day oceanographic conditions and to indicate intensive flow activity controlled by local topography. A comparison between the surface flow velocity estimated from empirical relationships for dune formation and the observed flow velocity suggests that the dunes are generated when the main axis of the meandering Kuroshio Current passes through this area, and that subsequent current velocities are sufficiently high to maintain the dunes up to the next event.  相似文献   
5.
Abstract Coral reefs are tropic to subtropic, coastal ecosystems comprising very diverse organisms. Late Quaternary reef deposits are fossil archives of environmental, tectonic and eustatic variations that can be used to reconstruct the paleoclimatic and paleoceanographic history of the tropic surface oceans. Reefs located at the latitudinal limits of coral‐reef ecosystems (i.e. those at coral‐reef fronts) are particularly sensitive to environmental changes – especially those associated with glacial–interglacial changes in climate and sealevel. We propose a land and ocean scientific drilling campaign in the Ryukyu Islands (the Ryukyus) in the northwestern Pacific Ocean to investigate the dynamic response of the corals and coral‐reef ecosystems in this region to Late Quaternary climate and sealevel change. Such a drilling campaign, which we call the COREF (coral‐reef front) Project, will allow the following three major questions to be evaluated: (i) What are the nature, magnitude and driving mechanisms of coral‐reef front migration in the Ryukyus? (ii) What is the ecosystem response of coral reefs in the Ryukyus to Quaternary climate changes? (iii) What is the role of coral reefs in the global carbon cycle? Subsidiary objectives include (i) the timing of coral‐reef initiation in the Ryukyus and its causes; (ii) the position of the Kuroshio current during glacial periods and its effects on coral‐reef formation; and (iii) early carbonate diagenetic responses as a function of compounded variations in climate, eustacy and depositional mineralogies (subtropic aragonitic to warm‐temperate calcitic). The geographic, climatic and oceanographic settings of the Ryukyu Islands provide an ideal natural laboratory to address each of these research questions.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号