首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   26篇
  国内免费   11篇
测绘学   5篇
大气科学   42篇
地球物理   74篇
地质学   150篇
海洋学   14篇
天文学   68篇
综合类   3篇
自然地理   15篇
  2023年   1篇
  2022年   4篇
  2021年   4篇
  2020年   4篇
  2019年   9篇
  2018年   12篇
  2017年   20篇
  2016年   19篇
  2015年   17篇
  2014年   19篇
  2013年   20篇
  2012年   23篇
  2011年   23篇
  2010年   21篇
  2009年   21篇
  2008年   24篇
  2007年   12篇
  2006年   14篇
  2005年   8篇
  2004年   12篇
  2003年   14篇
  2002年   15篇
  2001年   7篇
  2000年   6篇
  1999年   7篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有371条查询结果,搜索用时 15 毫秒
291.
The Altaid orogen was formed by aggregation of Paleozoic subduction–accretion complexes and Precambrian basement blocks between the Late Proterozoic and the Early Mesozoic. Because the Altaids are the site of abundant granitic plutonism and host some of the largest gold deposits in the world, understanding their formation has important implications on the comprehension of Phanerozoic crustal growth and metallogeny. In this study, we present the first extensive lead isotope data on magmatic and metasedimentary rocks as well as ore deposits of the southern part of the Altaids, including the Tien Shan (Tianshan) and southern Altay (Altai) orogenic belts. Our results show that each terrane investigated within the Tien Shan and southern Altay is characterized by a distinct Pb isotope signature and that there is a SW–NE Pb isotope gradient suggesting a progressive transition from a continental crust environment in the West (the Kyzylkum and Kokshaal segments of the Southern Tien Shan) to an almost 100% juvenile (MORB-type mantle-derived) crust environment in the East (Altay). The Pb isotope signatures of the studied ore deposits follow closely those of magmatic and metasedimentary rocks of the host terranes, thus supporting the validity of lead isotopes to discriminate terranes. Whereas this apparently suggests that no unique reservoir has been responsible for the huge gold concentration in this region, masking of a preferential Pb-poor Au-bearing reservoir by mixing with Pb-rich crustal reservoirs during the mineralizing events cannot be excluded.  相似文献   
292.
Oxygen transfer in the capillary fringe (CF) is of primary importance for a wide variety of biogeochemical processes occurring in shallow groundwater systems. In case of a fluctuating groundwater table two distinct mechanisms of oxygen transfer within the capillary zone can be identified: vertical predominantly diffusive mass flux of oxygen, and mass transfer between entrapped gas and groundwater. In this study, we perform a systematic experimental sensitivity analysis in order to assess the influence of different parameters on oxygen transfer from entrapped air within the CF to underlying anoxic groundwater. We carry out quasi two‐dimensional flow‐through experiments focusing on the transient phase following imbibition to investigate the influence of the horizontal flow velocity, the average grain diameter of the porous medium, as well as the magnitude and the speed of the water table rise. We present a numerical flow and transport model that quantitatively represents the main mechanisms governing oxygen transfer. Assuming local equilibrium between the aqueous and the gaseous phase, the partitioning process from entrapped air can be satisfactorily simulated. The different experiments are monitored by measuring vertical oxygen concentration profiles at high spatial resolution with a noninvasive optode technique as well as by determining oxygen fluxes at the outlet of the flow‐through chamber. The results show that all parameters investigated have a significant effect and determine different amounts of oxygen transferred to the oxygen‐depleted groundwater. Particularly relevant are the magnitude of the water table rise and the grain size of the porous medium.  相似文献   
293.
We estimate seismological fracture energies from two subsets of events selected from the seismic sequences of L’Aquila (2009), and Northridge (1994): 57 and 16 selected events, respectively, including the main shocks. Following Abercrombie and Rice (Geophys J Int 162: 406–424, 2005), we postulate that fracture energy (G) represents the post-failure integral of the dynamic weakening curve, which is described by the evolution of shear traction as a function of slip. Following a direct-wave approach, we compute mainshock-/aftershock-source spectral ratios, and analyze them using the approach proposed by Malagnini et al. (Pure Appl. Geophys., this issue, 2014) to infer corner frequencies and seismic moment. Our estimates of source parameters (including fracture energies) are based on best-fit grid-searches performed over empirical source spectral ratios. We quantify the source scaling of spectra from small and large earthquakes by using the MDAC formulation of Walter and Taylor (A revised Magnitude and Distance Amplitude Correction (MDAC2) procedure for regional seismic discriminants, 2001). The source parameters presented in this paper must be considered as point-source estimates representing averages calculated over specific ruptured portions of the fault area. In order to constrain the scaling of fracture energy with coseismic slip, we investigate two different slip-weakening functions to model the shear traction as a function of slip: (i) a power law, as suggested by Abercrombie and Rice (Geophys J Int 162: 406–424, 2005), and (ii) an exponential decay. Our results show that the exponential decay of stress on the fault allows a good fit between measured and predicted fracture energies, both for the main events and for their aftershocks, regardless of the significant differences in the energy budgets between the large (main) and small earthquakes (aftershocks). Using the power-law slip-weakening function would lead us to a very different situation: in our two investigated sequences, if the aftershock scaling is extrapolated to events with large slips, a power law (a la Abercrombie and Rice) would predict unrealistically large stress drops for large, main earthquakes. We conclude that the exponential stress evolution law has the advantage of avoiding unrealistic stress drops and unbounded fracture energies at large slip values, while still describing the abrupt shear-stress degradation observed in high-velocity laboratory experiments (e.g., Di Toro et al., Fault lubrication during earthquakes, Nature 2011).  相似文献   
294.
We report here the most complete dataset for major and trace elements, as well as Sr isotopic compositions, of magmas erupted by Stromboli since the onset of present-day activity 1,800 years ago. Our data relate to both porphyritic scoria and lava originating in the uppermost parts of the feeding system, plus crystal-poor pumice produced by paroxysmal explosive eruption of deep-seated, fast ascending, magma. The geochemical variations recorded by Stromboli’s products allow us to identify changes in magma dynamics affecting the entire plumbing system. Deep-seated magmas vary in composition between two end-members having different key ratios in strongly incompatible trace elements and Sr isotopes. These features may be ascribed to mantle source processes (fluid/melt enrichment, variable degrees of melting) and occasional contamination by deep, mafic, cumulates. Temporal trends reveal three phases during which magmas with distinct geochemical signatures were erupted. The first phase occurred between the third and fourteenth centuries AD and was characterised by the eruption of evolved magmas sharing geochemical and Sr isotopic compositions similar to those of earlier periods of activity (<12 ka—Neostromboli and San Bartolo). The second phase, which began in the sixteenth century and lasted until the first half of the twentieth century, produced more primitive, less radiogenic, magmas with the lowest Ba/La and Rb/Th ratios of our dataset. The last phase is ongoing and is marked by a magma having the lowest Sr isotopic composition and highest Rb/Th ratio of the dataset. While this new magma can be clearly identified in the pumice erupted during the last two paroxysmal eruptions of 2003 and 2007, shallow degassed magma extruded during this time span records significant geochemical and isotopic heterogeneities. We thus suggest that the shallow reservoir has been only partially homogenised by this new magma influx. We conclude that compositional variations within the shallow magma system of a persistently active volcano provide only a biassed signal of ongoing geochemical changes induced by deep magma refilling. We argue that source changes can only be identified by interpreting the geochemistry of pumice, because it reliably represents magma transferred directly from deep portions of the plumbing system to the surface.  相似文献   
295.
296.
297.
The Balagne ophiolite from central-northern Corsica represents a continent-near paleogeographic domain of the Jurassic Liguria-Piedmont ophiolitic basin. Pillow and massive basalt lavas are primarily associated with Middle–Upper Jurassic pelagic sediments (mostly radiolarites at their base), continental-derived quartzo-feldspathic clastic sediments and ophiolitic breccias containing clasts of gabbros and basalts. The basalt-sedimentary succession is tectonically associated with a slice composed of an intrusive sequence overlain by basalt lavas. A “plagiogranite” from the intrusive sequence was dated by U–Pb zircon geochronology. Although affected by some uncertainty, mainly reflecting common Pb contamination, the U–Pb zircon data suggest a crystallization age of 159 ± 3 Ma (MSWD = 6.3), which is coeval with the formation of oceanic lower crust in the Schistes Lustrés units from Alpine Corsica. The predominance of quartz grains preserving typical volcanic shape, the prevalence of prismatic zircons and the arkose whole-rock composition indicate that the continental-derived quartzo-feldspathic clastic sediments have a low degree of textural maturity. U–Pb zircon geochronology carried out on two distinct levels of quartzo-feldspathic clastic sediments identified the predominance of zircons with within error U–Pb dates at ~280 Ma; minor components at ~457, ~309 and ~262 Ma were also obtained. The U–Pb date distribution is consistent with a source magmatic material mostly developed during the Variscan orogenic collapse.  相似文献   
298.
We evaluate the potential of a hand‐held energy dispersive XRF spectrometer for the preliminary classification of non‐chondritic differentiated meteorites. The studied achondrites include nine lunar meteorites, seventeen Martian meteorites, five angrites and eighteen meteorites from asteroid 4 Vesta. Analytical precision and accuracy was tested on thirty‐nine terrestrial igneous rock slabs with a wide range of composition. Replicate analyses, performed on the studied meteorites, show that Fe/Mn values together with Si and Ca/K ratio can be used in the discrimination of different achondrite groups. Fusion crust's Fe/Mn values of meteorites from Vesta and Mars are indistinguishable from those of the interior implying that even measurements on the fusion‐crusted external surface could be sufficient to pigeonhole non‐chondritic meteorites. Hand‐held energy dispersive XRF spectrometer is a non‐destructive but very effective technique for preliminary classification of achondrites in the field and in laboratory and for the identification of mislabelled meteorites in museum collections.  相似文献   
299.
There is a growing need for cyberinfrastructure to support science-based decision making in management of natural resources. In particular, our motivation was to aid the development of cyberinfrastructure for Integrated Ecosystem Assessments (IEAs) for marine ecosystems. The IEA process involves analysis of natural and socio-economic information based on diverse and disparate sources of data, requiring collaboration among scientists of many disciplines and communication with other stakeholders. Here we describe our bottom-up approach to developing cyberinfrastructure through a collaborative process engaging a small group of domain and computer scientists and software engineers. We report on a use case evaluated for an Ecosystem Status Report, a multi-disciplinary report inclusive of Earth, life, and social sciences, for the Northeast U.S. Continental Shelf Large Marine Ecosystem. Ultimately, we focused on sharing workflows as a component of the cyberinfrastructure to facilitate collaboration and reproducibility. We developed and deployed a software environment to generate a portion of the Report, retaining traceability of derived datasets including indicators of climate forcing, physical pressures, and ecosystem states. Our solution for sharing workflows and delivering reproducible documents includes IPython (now Jupyter) Notebooks. We describe technical and social challenges that we encountered in the use case and the importance of training to aid the adoption of best practices and new technologies by domain scientists. We consider the larger challenges for developing end-to-end cyberinfrastructure that engages other participants and stakeholders in the IEA process.  相似文献   
300.
The “Colli Albani” composite volcano is made up of strongly silica-undersaturated leucite-bearing rocks. Magmas were erupted during three main periods, but a complex plumbing system dominated by regional tectonics channelled magmas into different reservoirs. The most alkali-rich magmas, restricted to the caldera-forming period (pre-caldera), are extremely enriched in incompatible trace elements and display more radiogenic Sr (87Sr/86Sr?=?0.71057–0.71067), with slightly less radiogenic Pb with respect to those of the post-caldera period. Post-caldera volcanic activity was concentrated in three different volcanic environments: external to the caldera, along the caldera edge and within the caldera. The post-caldera magmas produced melilite- to leucitite-bearing, plagioclase-free leucitites. In contrast to the pre-caldera lavas, they are characterised by lower incompatible trace element abundances and less radiogenic Sr (87Sr/86Sr?=?0.71006–0.71039). Magmas evolved through crystal fractionation plus minor crustal assimilation in a large magma chamber during the pre-caldera period. The multiple caldera collapses dissected and partially obliterated the early magma chamber. During the post-caldera stage, magmas were channelled through several pathways and multiple shallow-level magma reservoirs were established. A lithospheric mantle wedge previously depleted in the basaltic component and subsequently enriched by metasomatic slab-derived component is suggested as the mantle source of Colli Albani parental magmas. Two different parental magmas are recognised for the pre- and post-caldera stages. The differences may be related to the interplay between smaller degrees of melting for the pre-caldera magmas and more carbonate-rich recycled subducted lithologies in the post-caldera magmas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号