首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34554篇
  免费   723篇
  国内免费   340篇
测绘学   801篇
大气科学   2184篇
地球物理   7309篇
地质学   13059篇
海洋学   3166篇
天文学   7628篇
综合类   97篇
自然地理   1373篇
  2022年   340篇
  2021年   552篇
  2020年   604篇
  2019年   631篇
  2018年   1333篇
  2017年   1264篇
  2016年   1475篇
  2015年   793篇
  2014年   1301篇
  2013年   2014篇
  2012年   1438篇
  2011年   1669篇
  2010年   1515篇
  2009年   1802篇
  2008年   1514篇
  2007年   1532篇
  2006年   1435篇
  2005年   871篇
  2004年   810篇
  2003年   775篇
  2002年   769篇
  2001年   708篇
  2000年   658篇
  1999年   511篇
  1998年   558篇
  1997年   520篇
  1996年   431篇
  1995年   416篇
  1994年   456篇
  1993年   340篇
  1992年   338篇
  1991年   327篇
  1990年   378篇
  1989年   259篇
  1988年   264篇
  1987年   303篇
  1986年   248篇
  1985年   359篇
  1984年   313篇
  1983年   303篇
  1982年   325篇
  1981年   245篇
  1980年   286篇
  1979年   235篇
  1978年   261篇
  1977年   205篇
  1976年   191篇
  1975年   211篇
  1974年   198篇
  1973年   207篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
941.
942.
A new coupled atmosphere–ocean–sea ice model has been developed, named the Bergen Climate Model (BCM). It consists of the atmospheric model ARPEGE/IFS, together with a global version of the ocean model MICOM including a dynamic–thermodynamic sea ice model. The coupling between the two models uses the OASIS software package. The new model concept is described, and results from a 300-year control integration is evaluated against observational data. In BCM, both the atmosphere and the ocean components use grids which can be irregular and have non-matching coastlines. Much effort has been put into the development of optimal interpolation schemes between the models, in particular the non-trivial problem of flux conservation in the coastal areas. A flux adjustment technique has been applied to the heat and fresh-water fluxes. There is, however, a weak drift in global mean sea-surface temperature (SST) and sea-surface salinity (SSS) of respectively 0.1 °C and 0.02 psu per century. The model gives a realistic simulation of the radiation balance at the top-of-the-atmosphere, and the net surface fluxes of longwave, shortwave, and turbulent heat fluxes are within observed values. Both global and total zonal means of cloud cover and precipitation are fairly close to observations, and errors are mainly related to the strength and positioning of the Hadley cell. The mean sea-level pressure (SLP) is well simulated, and both the mean state and the interannual standard deviation show realistic features. The SST field is several degrees too cold in the equatorial upwelling area in the Pacific, and about 1 °C too warm along the eastern margins of the oceans, and in the polar regions. The deviation from Levitus salinity is typically 0.1 psu – 0.4 psu, with a tendency for positive anomalies in the Northern Hemisphere, and negative in the Southern Hemisphere. The sea-ice distribution is realistic, but with too thin ice in the Arctic Ocean and too small ice coverage in the Southern Ocean. These model deficiencies have a strong influence on the surface air temperatures in these regions. Horizontal oceanic mass transports are in the lower range of those observed. The strength of the meridional overturning in the Atlantic is 18 Sv. An analysis of the large-scale variability in the model climate reveals realistic El Niño – Southern Oscillation (ENSO) and North Atlantic–Arctic Oscillation (NAO/AO) characteristics in the SLP and surface temperatures, including spatial patterns, frequencies, and strength. While the NAO/AO spectrum is white in SLP and red in temperature, the ENSO spectrum shows an energy maximum near 3 years.  相似文献   
943.
We compare flux and concentration footprint estimates of athree-dimensional Lagrangian stochastic dispersion modelapplying backward trajectories with the results of ananalytical footprint model by Kormann and Meixner.The comparison is performed for varying stability regimesof the surface layer as well as for different measurementheights. In general, excellent correspondence is found.  相似文献   
944.
Summary ¶Various water budget elements (water supply to the atmosphere, ground water recharge, change in storage) are predicted by HTSVS for a period of 2050 days. The predicted water budget elements are evaluated by routine lysimeter data. The results show that land surface models need parameterizations for soil frost, snow effects and water uptake to catch the broad cycle of soil water budget elements. In principle, HTSVS is able to simulate the general characteristics of the seasonal changes in these water budget elements and their long-term accumulated sums. Compared to lysimeter data, there is a discrepancy in the predicted water supply to the atmosphere for summer and winter which may be attributed to the hardly observed plant physiological parameters like root depth, LAI, shielding factor, etc., the lack of measured downward long-wave radiation, and some simplifications made in the parameterizations of soil frost and snow effects. The fact that high resolution data for the evaluation of model results are missing and evaluation is made on the basis of the data from routine stations of a network is typical for the results of long-term studies on climate. Taking into account the coarse resolution of climate models, the coarse vertical resolution that is used in their LSMs, and the lack of suitable parameters needed, it seems that discrepancies in the order of magnitude found in this study are a general uncertainty in the results of land surface modeling on typical spatial and temporal scales of the climate system.Received October 8, 2001; revised February 15, 2002; accepted September 20, 2002 Published online: April 10, 2003  相似文献   
945.
The Remote Sensing Core Curriculum (RSCC) was initiated in 1993 to meet the demands for a college-level set of resources to enhance the quality of education across national and international campuses. The American Society of Photogrammetry and Remote Sensing adopted the RSCC in 1996 to sustain support of this educational initiative for its membership and collegiate community. A series of volumes, containing lectures, exercises, and data, is being created by expert contributors to address the different technical fields of remote sensing. The RSCC program is designed to operate on the Internet taking full advantage of the World Wide Web (WWW) technology for distance learning. The issues of curriculum development related to the educational setting, with demands on faculty, students, and facilities, is considered to understand the new paradigms for WW-influenced computer-aided learning. The WWW is shown to be especially appropriate for facilitating remote sensing education with requirements for addressing image data sets and multimedia learning tools. The RSCC is located at http://www.umbc.edu/rscc  相似文献   
946.
Summary The numerical simulation of a long-lived, stationary mesoscale convective system (MCS) already described in a previous paper (Fernández et al., 1995) is analyzed in greater detail. The influence of various external forcings, such as sea surface temperature, local orography or terrain roughness, upon the characteristics of the system is studied. This analysis makes it possible not only to identify the most important factors, but also to deduce the importance of some other internal forcings and to propose explanations for some dynamic features of the system that were difficult to understand. Hence, the sensitivity test methodology applied seems to be a useful tool to clarify the complex dynamics of some moist convective events. In the modelled MCS, sea surface temperature and orography are identified as key factors. The results also indicate that the upstream triggering of convection provoked by an orographic blocking effect is the main cause of the development of the system, while upslope triggering plays a secondary role.With 18 Figures  相似文献   
947.
An unusual liptinite coal component has been reported in the Chinese literature over the past sixty years. It has been described as a maceral in the Chinese National Standard (1991), but it has not been named internationally. In Chinese literature it is called “barkinite”, on the basis of its morphological features and because it is believed to have originated as bark tissue.“Barkinite” occurs in Late Permian, marine-influenced coals and is best represented in the Changguang, Leping and Shuicheng Basins of southern China.The material originates from plant periderm or the bark of higher plants. However, “bark” contains a variety of substances, including resin and suberin, which are recognised as the precursors of the resinite and suberinite macerals. “Barkinite” is distinguished by (i) its thickness; individual pieces can be more than ten cells thick and several centimetres long and (ii) it fluoresces strongly at 0.6% vitrinite reflectance and loses its fluorescence at about 1.1% vitrinite reflectance.The reporting of “barkinite” from only Chinese coals may be due to its origin from Lepidodendron and Psaronius flora, which was common in the Northern Hemisphere during the Carboniferous, but which was isolated to China by the Late Permian. It is proposed that the remnant flora evolved into unique forms in China by the Late Permian. Lepidodendron and Psaronius remains, coupled with a strongly marine-influenced, peat-forming environment have given rise to “barkinite” and to its restricted distribution.  相似文献   
948.
949.
950.
The Petit-Rhône Fan Valley (north-western Mediterranean) is a broad, sinuous, filled valley that is deeply incised by a narrow, sinuous thalweg. The valley fill is differentiated into three seismic subunits on high-resolution seismic-reflection profiles. The lower chaotic subunit probably consists of channel lag deposits that seem to be in lateral continuity with high-amplitude reflections representing levee facies. The intermediate transparent subunit, which has an erosional base and clearly truncates levee deposits, is interpreted to be mass-flow deposits resulting from the disintegration of the fan-valley flanks. The upper bedded subunit shows an overall lens-shaped geometry and the seismic reflections onlap either onto the top of the underlying transparent subunit or onto the Rhône levees. Piston core data show that the upper few meters of this upper subunit consist of thin turbidites, probably deposited by overflow processes. The few available 14C ages suggest that the upper stratified subunit filled the Petit-Rhône Fan Valley between 21 and 11 kyr BP. The upper bedded subunit is deposited within the Petit-Rhône Fan Valley downslope of a major decrease in slope gradient. This upper subunit and the thalweg are genetically related and represent a small channel/levee system confined within the fan valley. Previous studies interpreted this thalweg to be an erosional feature resulting from a recent avulsion of the major channel course. Our interpretation implies that the thalweg is not a purely erosional feature but a depositional/erosional channel. This small channel/levee system is superimposed on a large muddy channel/levee system after the sediment supply changed from thick muddy flows during the main phase of aggradation of the Rhône Fan levees, to thin, mixed (sand and mud) flows at the end of Isotope Stage 2 (~16–18 ka BP). The pre-existing morphology of the Petit-Rhône Fan Valley played a determinant role in the sediment dispersal leading to the creation of this small and confined channel/levee system. These mixed flows have undergone flow stripping resulting from the changes in the slope gradient along the thalweg course. The finer sediment overflowed from the thalweg and were deposited in the Petit-Rhône Fan Valley. Coarser channelled sediment remaining in the thalweg were deposited as a ‘sandy’lobe (Neofan). As indicated by 14C dating, sedimentation on this lobe continued until very recently, suggesting a further evolution of the turbidity flows from small mixed flows to small sandy flows. the deposition of this study lobe and the sedimentary fill of the Petit-Rhône Fan Valley may be related to widespread shelf edge and canyon wall failures with a resulting downslope evolution of failed sediment into turbidity currents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号