首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
地球物理   6篇
地质学   11篇
天文学   3篇
自然地理   2篇
  2019年   1篇
  2014年   1篇
  2011年   1篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   2篇
  1995年   1篇
  1994年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
11.
A new polymorph of FeS has been observed at pressures above 30 GPa at 1,300 K by in situ synchrotron X-ray diffraction measurements in a laser-heated diamond anvil cell. It is stable up to, at least, 170 GPa at 1,300 K. The new phase (here called FeS VI) has an orthorhombic unit cell with lattice parameters a = 4.8322 (17) Å, b = 3.0321 (6) Å, and c = 5.0209 (8) Å at 85 GPa and 300 K. Its topological framework is based on the NiAs-type structure as is the case for the other reported polymorphs (FeS I-V). The unit cell of FeS VI is, however, more distorted (contracted) along the [010] direction of the original NiAs-type cell. For example, the c/b axial ratio is ~1.66 at 85 GPa and 300 K, which is considerably smaller than that of orthorhombic FeS II (~1.72) and NiAs-type hexagonal FeS V (=√3 ≈ 1.73). The phase boundary between FeS IV and VI is expected to be located around 30 GPa at 1,300 K. The phase transition is accompanied by gradual and continuous changes in volume and axial ratios and may be second order. At room temperature, FeS VI becomes stable over FeS III at pressures above 36 GPa. It is, therefore, suggested that the phase boundary of FeS III–VI and/or FeS IV–VI has negative pressure dependence.  相似文献   
12.
The high-pressure stability limit of calcium aluminosilicate (CAS) phase has been examined in its end-member CaAl4Si2O11 composition at 18–39 GPa and 1,670–2,300 K in a laser-heated diamond-anvil cell (LHDAC). The in-situ synchrotron X-ray diffraction measurements revealed that the CAS phase decomposes into three-phase assemblage of cubic Al-bearing CaSiO3 perovskite, Al2O3 corundum, and SiO2 stishovite above 30 GPa and 2,000 K with a positive pressure–temperature slope. Present results have important implications for the subsolidus mineral assemblage of subducted sediment and the melting phase relation of basalt in the lower mantle.  相似文献   
13.
We have determined the post-perovskite phase transition boundary in MgSiO3 in a wide temperature range from 1640 to 4380 K at 119–171 GPa on the basis of synchrotron X-ray diffraction measurements in-situ at high-pressure and -temperature in a laser-heated diamond-anvil cell (LHDAC). The results show a considerably high positive Clapeyron slope of + 13.3 ± 1.0 MPa/K and a transition temperature of about 3520 ± 70 K at the core–mantle boundary (CMB) pressure. The thermal structure in D″ layer can be tightly constrained from precisely determined post-perovskite phase transition boundary and the depths of paired seismic discontinuities. These suggest that temperature at the CMB may be around 3700 K, somewhat lower than previously thought. A minimum bound on the global heat flow from the core is estimated to be 6.6 ± 0.5 TW.  相似文献   
14.
The Nobeyama Millimeter Array Survey for protoplanetary disks has been made for 19 protostellar IRAS sources in Taurus; 13 of them were optically invisible protostars and 6 were young T Tauri stars. We observed 98-GHz continuum and CS(J = 2 – 1) line emissions simultaneously with spatial resolutions of 2 . 8-8 . 8 (360-1,200 AU). The continuum emission was detected from 5 out of 6 T Tauri stars and 2 out of 13 protostar candidates: the emission was not spatially resolved and was consistent with being originated from compact circumstellar disks. Extended CS emission was detected around 2 T Tauri stars and 11 protostar candidates. There is a remarkable tendency for the detectability of the 98-GHz continuum emission to be small for protostar candidates. This tendency is explained if the mass of protoplanetary disks around protostars is not as large as that around T Tauri stars; the disk mass may increase with the increase of central stellar mass by dynamical accretion in the course of evolution from protostars to T Tauri stars.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   
15.
Micro‐X‐ray fluorescence scanning spectroscopy of marine and lake sedimentary sequences can provide detailed palaeoenvironmental records through element intensity proxy data. However, problems with the effects of interstitial pore water on the micro‐X‐ray fluorescence intensities have been pointed out. This is because the X‐ray fluorescence intensities are measured directly at the surfaces of split wet sediment core samples. This study developed a new method for correcting X‐ray fluorescence data to compensate for the effects of pore water using a scanning X‐ray analytical microscope. This involved simultaneous use of micro‐X‐ray fluorescence scanning spectroscopy and an X‐ray transmission detector. To evaluate the interstitial pore water content from the X‐ray transmission intensities, a fine‐grained sediment core retrieved from Lake Baikal (VER99‐G12) was used to prepare resin‐embedded samples with smooth surfaces and uniform thickness. Simple linear regression between the linear absorption coefficients of the samples and their porosity, based on the Lambert–Beer law, enabled calculation of the interstitial pore spaces and their resin content with high reproducibility. The X‐ray fluorescence intensities of resin‐embedded samples were reduced compared with those of dry sediment samples because of: (i) the X‐ray fluorescence absorption of resin within sediment; and (ii) the sediment dilution effects by resin. An improved micro‐X‐ray fluorescence correction equation based on X‐ray fluorescence emission theory considers the instrument's sensitivity to each element, which provides a reasonable explanation of these two effects. The resin‐corrected X‐ray fluorescence intensity was then successfully converted to elemental concentrations using simple linear regression between the data from micro‐X‐ray fluorescence scanning spectroscopy and from the conventional analyzer. In particular, the calculated concentration of SiO2 over the depth of the core, reflecting diatom/biogenic silica concentration, was significantly changed by the calibrations, from a progressively decreasing trend to an increasing trend towards the top of the core.  相似文献   
16.
Geochemistry of a sediment core from Lake Hovsgol, northwest Mongolia provides a continuous, 27-kyr history of the response of the lake and the surrounding catchment to climate change. Principle component (PC) analysis of 19 major and trace elements, total inorganic carbon (TIC), and total organic carbon (TOC) in the bulk sediment samples revealed that the 21 chemical components can be grouped into four assemblages—group-1: Na, Mg, Ca, Sr, and TIC, hosted in carbonate minerals (calcite, dolomite, and magnesian calcite); group-2: Ni, Cu, and Zn, recognized as biophilic trace metals, and TOC; group-3: Al, K, Ti, V, Fe, Rb, Cs, Ba, and Pb, composed of rock-forming minerals; and group-4: Cr, Mn, and As, sensitive to the redox condition of the sediment. The four element assemblages originated from three relevant processes. Group-1 and group-2 components are authigenic products and comprise the end member on the PC-1 score, whose variation reflects changes in the water volume, i.e. the balance between precipitation and evaporation (P/E). Group-3 components from detrital materials of the catchment contribute to the PC-2 score, whose variability indicates erosion/weathering intensity in the drainage basin, which might be controlled by the amount of vegetation cover associated with moisture change. The group-4 components of redox-sensitive elements contribute to the PC-3 score and are not an end member because of their small amount. The first two PC scores suggest a sequential record of paleo-moisture evolution in central Asia. The P/E balance in the Lake Hovsgol region, inferred from the PC-1 score, gradually increased during the glacial/interglacial transition. This resembles climate change of the North Atlantic region on the glacial–interglacial scale, but does not reflect the abrupt climate shifts such as the warm Bølling-Allerød and the cold Younger Dryas of the North Atlantic on the millennial scale. A periodic variation of ~8.7 kyr was observed in the PC-2 score profile of detrital input to Lake Hovsgol over the last glacial and Holocene. The decrease in detrital input coincided with the copious supply of moisture from the Asian monsoon regime and the North Atlantic westerly winds to the Baikal drainage basin, which includes Lake Hovsgol. Our geochemical records from Lake Hovsgol demonstrate that the climate system of interior continental Asia was strongly influenced by change on both Milankovitch and sub-Milankovitch scales.  相似文献   
17.
Simultaneous volume measurements of MgSiO3 post-perovskite (PPv) and perovskite (Pv) were performed in a diamond anvil cell (DAC) combined with synchrotron X-rays. An externally-heated DAC was used in addition to a laser-heated DAC for the volume measurement experiment at high temperatures. The volume data were collected in the stability field of post-perovskite from 115 to 130 GPa. The temperature generated in the externally-heated and the laser-heated DACs for the volume measurement were up to 832 and 2330 K, respectively. Using two different but complementary heating techniques, we collected the data at a wide temperature range from 300 to 2330 K. The obtained P-V-T data for PPv and Pv were fitted to a third-ordered Birch-Murnaghan equation of state (EOS). For a precise comparison of the volume between the two phases, the EOSs were constructed based on the same pressure scale of MgO. The simultaneous volume measurements and the volumes calculated from the determined EOSs demonstrate that the volume difference between PPv and Pv of about 1.5% is almost constant with increasing temperature to 4000 K at the transition. At the base of the mantle, this density difference corresponds to a temperature anomaly of 1300 K without the phase transition due to the very small thermal expansivity of minerals, which has a significant effect on mantle dynamics. The thermal expansivity contrast between the top and the bottom of the mantle is a factor of 3.6. From a mantle convection study, this value suggests that huge and hot plumes are formed at the core–mantle boundary.  相似文献   
18.
Partitioning of oxygen and silicon between molten iron and (Mg,Fe)SiO3 perovskite was investigated by a combination of laser-heated diamond-anvil cell (LHDAC) and analytical transmission electron microscope (TEM) to 146 GPa and 3,500 K. The chemical compositions of co-existing quenched molten iron and perovskite were determined quantitatively with energy-dispersive X-ray spectrometry (EDS) and electron energy loss spectroscopy (EELS). The results demonstrate that the quenched liquid iron in contact with perovskite contained substantial amounts of oxygen and silicon at such high pressure and temperature (P–T). The chemical equilibrium between perovskite, ferropericlase, and molten iron at the P–T conditions of the core–mantle boundary (CMB) was calculated in Mg–Fe–Si–O system from these experimental results and previous data on partitioning of oxygen between molten iron and ferropericlase. We found that molten iron should include oxygen and silicon more than required to account for the core density deficit (<10%) when co-existing with both perovskite and ferropericlase at the CMB. This suggests that the very bottom of the mantle may consist of either one of perovskite or ferropericlase. Alternatively, it is also possible that the bulk outer core liquid is not in direct contact with the mantle. Seismological observations of a small P-wave velocity reduction in the topmost core suggest the presence of chemically-distinct buoyant liquid layer. Such layer physically separates the mantle from the bulk outer core liquid, hindering the chemical reaction between them.  相似文献   
19.
The phase relations of Fe-6.4 wt% Si and Fe-9.9 wt% Si have been investigated up to 130 GPa and 2,600 K based on in situ synchrotron X-ray diffraction measurements in a laser-heated diamond-anvil cell along with chemical analysis of the quenched samples using a field-emission electron probe microanalyzer. We found that the maximum solubility of silicon in solid hcp-iron increases with increasing pressure. Linear extrapolation of the phase boundary between hcp + B2 and hcp phases for Fe-9.9 wt% Si suggests that the solid hcp-iron can include more than 9.9 wt% Si at the Earth’s inner-core conditions. If silicon is a major light element in the outer core, a substantial amount of silicon may be incorporated into the inner core during inner-core solidification.  相似文献   
20.
The electrical conductivities of natural pyrolitic mantle and MORB materials were measured at high pressure and temperature covering the entire lower mantle conditions up to 133 GPa and 2650 K. In contrast to the previous laboratory-based models, our data demonstrate that the conductivity of pyrolite does not increase monotonically but varies dramatically with depth in the lower mantle; it drops due to high-spin to low-spin transition of iron in both perovskite and ferropericlase in the mid-lower mantle and increases sharply across the perovskite to post-perovskite phase transition at the D″ layer. We also found that the MORB exhibits much higher conductivity than pyrolite. The depth–conductivity profile measured for pyrolite does not match the geomagnetic field data below about 1500-km depth, possibly suggesting the existence of large quantities of subducted MORB crust in the deep lower mantle. The observations of geomagnetic jerks suggest that the electrical conductivity may be laterally heterogeneous in the lowermost mantle with high anomaly underneath Africa and the Pacific, the same regions as large low shear-wave velocity provinces. Such conductivity and shear-wave speed anomalies are also possibly caused by the deep subduction and accumulation of dense MORB crust above the core–mantle boundary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号