首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   790篇
  免费   73篇
测绘学   27篇
大气科学   54篇
地球物理   265篇
地质学   242篇
海洋学   57篇
天文学   174篇
综合类   2篇
自然地理   42篇
  2023年   3篇
  2022年   4篇
  2021年   11篇
  2020年   17篇
  2019年   13篇
  2018年   38篇
  2017年   42篇
  2016年   44篇
  2015年   35篇
  2014年   44篇
  2013年   38篇
  2012年   37篇
  2011年   47篇
  2010年   48篇
  2009年   55篇
  2008年   34篇
  2007年   46篇
  2006年   22篇
  2005年   17篇
  2004年   28篇
  2003年   20篇
  2002年   23篇
  2001年   22篇
  2000年   14篇
  1999年   15篇
  1998年   15篇
  1997年   9篇
  1996年   6篇
  1995年   11篇
  1994年   4篇
  1993年   13篇
  1992年   4篇
  1991年   6篇
  1989年   5篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1983年   3篇
  1982年   4篇
  1980年   6篇
  1979年   5篇
  1978年   7篇
  1976年   3篇
  1975年   4篇
  1974年   4篇
  1973年   3篇
  1971年   3篇
  1969年   3篇
  1968年   2篇
  1955年   3篇
排序方式: 共有863条查询结果,搜索用时 46 毫秒
841.
A comparison of coincident GRACE and ICESat data over Antarctica   总被引:5,自引:0,他引:5  
In this study, we present a comparison of coincident GRACE and ICESat data over Antarctica. The analysis focused on the secular changes over a 4-year period spanning from 2003 to 2007, using the recently reprocessed and publicly available data sets for both missions. The results show that the two independent data sets possess strong spatial correlations, but that there are several factors that can significantly impact the total derived ice mass variability from both missions. For GRACE, the primary source of uncertainty comes from the modelling of glacial isostatic adjustment, along with the estimates of C 2,0 and the degree one terms. For ICESat, it is shown that assumptions about firn density, rate biases, and the sampling interval of the various laser campaigns can have large effects on the results. Despite these uncertainties, the similarities that do exist indicate a strong potential for the future refinement of both GIA and mass balance estimates of Antarctica.  相似文献   
842.
Monte Carlo simulation of space radiation effects induced by protons is important for design of space missions. Geant4 is a well established toolkit for Monte Carlo simulation focused on high energy physics applications. In this work, a set of new validation results versus data for Geant4 electromagnetic and hadronic interaction of protons is presented and discussed. Optimal configuration of Geant4 physics for space applications is proposed.  相似文献   
843.
According to the current seismic codes, structures are designed to resist the first damaging earthquake during their service life. However, after a strong main shock, a structure may still face damaging aftershocks. The main shock‐aftershock sequence may result in major damage and eventually the collapse of a structure. Current studies on seismic hazard mainly focus on the modeling and simulation of main shocks. This paper proposes a 3‐step procedure to generate main shock‐aftershock sequences of pairs of horizontal components of a ground motion at a site of interest. The first step generates ground motions for the main shock using either a source‐based or site‐based model. The second step generates sequences of aftershocks' magnitudes, locations, and times of occurrence using either a fault‐based or seismicity‐based model. The third step simulates pairs of ground motion components using a new empirical model proposed in this paper. We develop prediction equations for the controlling parameters of a ground motion model, where the predictors are the site condition and the aftershock characteristics from the second step. The coefficients in the prediction equations and the correlation between the model parameters (of the 2 horizontal components of 1 record and of several records in 1 sequence) are estimated using a database of aftershock accelerograms. A backward stepwise deletion method is used to simplify the initial candidate prediction equations and avoid overfitting the data. The procedure, based on easily identifiable engineering parameters, is a useful tool to incorporate effects of aftershocks into seismic analysis and design.  相似文献   
844.
This paper presents a procedure for seismic design of reinforced concrete structures, in which performance objectives are formulated in terms of maximum accepted mean annual frequency (MAF) of exceedance, for multiple limit states. The procedure is explicitly probabilistic and uses Cornell's like closed‐form equations for the MAFs. A gradient‐based constrained optimization technique is used for obtaining values of structural design variables (members' section size and reinforcement) satisfying multiple objectives in terms of risk levels. The method is practically feasible even for real‐sized structures thanks to the adoption of adaptive equivalent linear models where element‐by‐element stiffness reduction is performed (2 linear analyses per intensity level). General geometric and capacity design constraints are duly accounted for. The procedure is applied to a 15‐storey plane frame building, and validation is conducted against results in terms of drift profiles and MAF of exceedance, obtained by multiple‐stripe analysis with records selected to match conditional spectra. Results show that the method is suitable for performance‐based seismic design of RC structures with explicit targets in terms of desired risk levels.  相似文献   
845.
In this study, we analyse the susceptibility to liquefaction of the Pozzone site, which is located on the northern side of the Fucino lacustrine basin in central Italy. In 1915, this region was struck by a M 7.0 earthquake, which produced widespread coseismic surface effects that were interpreted to be liquefaction-related. However, the interpretation of these phenomena at the Pozzone site is not straightforward. Furthermore, the site is characterized by an abundance of fine-grained sediments, which are not typically found in liquefiable soils. Therefore, in this study, we perform a number of detailed stratigraphic and geotechnical investigations (including continuous-coring borehole, CPTu, SDMT, SPT, and geotechnical laboratory tests) to better interpret these 1915 phenomena and to evaluate the liquefaction potential of a lacustrine environment dominated by fine-grained sedimentation. The upper 18.5 m of the stratigraphic succession comprises fine-grained sediments, including four strata of coarser sediments formed by interbedded layers of sand, silty sand and sandy silt. These strata, which are interpreted to represent the frontal lobes of an alluvial fan system within a lacustrine succession, are highly susceptible to liquefaction. We also find evidence of paleo-liquefaction, dated between 12.1–10.8 and 9.43–9.13 kyrs ago, occurring at depths of 2.1–2.3 m. These data, along with the aforementioned geotechnical analyses, indicate that this site would indeed be liquefiable in a 1915-like earthquake. Although we found a broad agreement among CPTu, DMT and shear wave velocity “simplified procedures” in detecting the liquefaction potential of the Pozzone soil, our results suggest that the use and comparison of different in situ techniques are highly recommended for reliable estimates of the cyclic liquefaction resistance in lacustrine sites characterized by high content of fine-grained soils. In geologic environments similar to the one analysed in this work, where it is difficult to detect liquefiable layers, one can identify sites that are susceptible to liquefaction only by using detailed stratigraphic reconstructions, in situ characterization, and laboratory analyses. This has implications for basic (Level 1) seismic microzonation mapping, which typically relies on the use of empirical evaluations based on geologic maps and pre-existing sub-surface data (i.e., age and type of deposits, prevailing grain size, with particular attention paid to clean sands, and depth of the water table).  相似文献   
846.
The traditional construction of masonry infills adjacent to RC structural elements is still widely adopted in European countries, including seismically active regions. Given the repeated field observations from damaging earthquakes, pointing to unacceptably high levels of masonry infill damage, the present study is motivated by the need to improve further the European seismic design approach for new RC structures with masonry infills, in order to exclude the poor seismic behaviour probably caused by deficiencies in the verification procedure. Since the in-plane damage to non-structural panels is commonly controlled through the limitation of inter-storey drifts, the possibility to introduce more effective verification criteria, accounting for structural properties, infill layouts and masonry properties is explored. Therefore, starting from the assumption that analyses and verifications in the design of buildings are commonly accomplished neglecting the presence of infills, results of extensive nonlinear numerical analyses for different building configurations are examined. As a result, a simplified procedure for the prediction of expected inter-storey drifts for infilled structures, based on the corresponding demands of bare configurations, in function of a simple parameter accounting for structural properties and the presence of infills, is introduced. Possible implications of the proposed approach aimed at the improvement of the current design provisions are discussed.  相似文献   
847.
On August 21st, 2017, an earthquake with duration magnitude Md?=?4.0 and epicentre in Casamicciola Terme hit Ischia island, in the South of Italy. This event caused two fatalities and dozens of injured people. Moreover, despite the low magnitude, the earthquake produced significant damages to masonry and reinforced concrete (RC) buildings, with some partial or complete collapse of structures, in a very limited area close to the epicentre, while even at small distance from the most damaged zone the earthquake was just felt by local people and tourists. In the days after the event, discussions concerning the destructive effects of such an earthquake arose in the scientific community—as also reported by local and national media. In this paper, the seismic history of Ischia island is recalled to show and explain the peculiarity of the August 21st earthquake, which is also described in terms of ground motion and response spectra characteristics. The results of the first surveys carried out in Casamicciola Terme are reported, together with appropriate pictures, to introduce and explain the observed damage state of masonry and RC buildings in the epicentral zone. Then, data from the 15th general census of the population and dwellings (ISTAT) is used to define vulnerability classes according to the classification of the European Macrosismic Scale (EMS-98) (Grünthal, 1998). Seismic damage scenarios are then evaluated combining macro-seismic intensity values obtained using an interpolation method starting from QUEST macro-seismic survey data (Azzaro et al., 2017 ) and fragility curves for A-to-D vulnerability classes and for five damage states, from DS0 (no damage) to DS5 (collapse) trough a Monte Carlo simulation technique. The distributions of Usable, Temporarily or Partially Unusable, and Unusable buildings, which are obtained by using relationships between damage and usability judgments obtained through post-earthquake damage data collected after past seismic events, result in very good accordance with those published in September 1st, 2017 by the Department of Civil Protection, regarding a dataset of about 600 buildings.  相似文献   
848.
In this paper, we introduce a new method of geophysical data interpretation based on simultaneous analysis of images and sounds. The final objective is to expand the interpretation workflow through multimodal (visual–audio) perception of the same information. We show how seismic data can be effectively converted into standard formats commonly used in digital music. This conversion of geophysical data into the musical domain can be done by applying appropriate time–frequency transforms. Using real data, we demonstrate that the Stockwell transform provides a very accurate and reliable conversion. Once converted into musical files, geophysical datasets can be played and interpreted by using modern computer music tools, such as sequencers. This approach is complementary and not substitutive of interpretation methods based on imaging. It can be applied not only to seismic data but also to well logs and any type of geophysical time/depth series. To show the practical implications of our integrated visual–audio method of interpretation, we discuss an application to a real seismic dataset in correspondence of an important hydrocarbon discovery.  相似文献   
849.
The aim of this work is to propose seismic reliability‐based relationships between the strength reduction factors and the displacement ductility demand of nonlinear structural systems equipped with friction pendulum isolators (FPS) depending on the structural properties. The isolated structures are described by employing an equivalent 2dof model characterized by a perfectly elastoplastic rule to account for the inelastic response of the superstructure, whereas, the FPS behavior is described by a velocity‐dependent model. An extensive parametric study is carried out encompassing a wide range of elastic and inelastic building properties, different seismic intensity levels and considering the friction coefficient as a random variable. Defined a set of natural seismic records and scaled to the seismic intensity corresponding to life safety limit state for L'Aquila site (Italy) according to NTC08, the inelastic characteristics of the superstructures are designed as the ratio between the average elastic responses and increasing strength reduction factors. Incremental dynamic analyses (IDAs) are developed to evaluate the seismic fragility curves of both the inelastic superstructure and the isolation level assuming different values of the corresponding limit states. Integrating the fragility curves with the seismic hazard curves related to L'Aquila site (Italy), the reliability curves of the equivalent inelastic base‐isolated structural systems, with a design life of 50 years, are derived proposing seismic reliability‐based regression expressions between the displacement ductility demand and the strength reduction factors for the superstructure as well as seismic reliability‐based design (SRBD) abacuses useful to define the FPS properties. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
850.
When performing loss assessment of a geographically dispersed building portfolio, the response or loss (fragility or vulnerability) function of any given archetype building is typically considered to be a consistent property of the building itself. On the other hand, recent advances in record selection have shown that the seismic response of a structure is, in general, dependent on the nature of the hazard at the site of interest. This apparent contradiction begs the question: Are building fragility and vulnerability functions independent of site, and if not, what can be done to avoid having to reassess them for each site of interest? In the following, we show that there is a non‐negligible influence of the site, the degree of which depends on the intensity measure adopted for assessment. Employing a single‐period (e.g., first‐mode), spectral acceleration would require careful record selection at each site and result to significant site‐to‐site variability of the fragility or vulnerability function. On the other hand, an intensity measure comprising the geometric mean of multiple spectral accelerations considerably reduces such variability. In tandem with a conditional spectrum record selection that accounts for multiple sites, it can offer a viable approach for incorporating the effect of site dependence into fragility and vulnerability estimates. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号