首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   11篇
测绘学   2篇
大气科学   7篇
地球物理   29篇
地质学   18篇
海洋学   17篇
天文学   10篇
自然地理   2篇
  2021年   3篇
  2020年   7篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   10篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   5篇
  2011年   3篇
  2010年   1篇
  2009年   5篇
  2008年   6篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2000年   2篇
  1997年   2篇
  1996年   1篇
  1991年   1篇
  1990年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有85条查询结果,搜索用时 31 毫秒
11.
The problem of discharge forecasting using precipitation as input is still very active in Hydrology, and has a plethora of approaches to its solution. But, when the objective is to simulate discharge values without considering the phenomenology behind the processes involved, Artificial Neural Networks, ANN give good results. However, the question of how the black box internally solve this problem remains open. In this research, the classical rainfall-runoff problem is approached considering that the total discharge is a sum of components of the hydrological system, which from the ANN perspective is translated to the sum of three signals related to the fast, middle and slow flow. Thus, the present study has two aims (a) to study the time-frequency representation of discharge by an ANN hydrologic model and (b) to study the capabilities of ANN to additively decompose total river discharge. This study adds knowledge to the open problem of the physical interpretability of black-box models, which remains very limited. The results show that total discharge is adequately simulated in the time frequency domain, although less power spectrum is evident during the rainy seasons in the ANN model, due to fast flow underestimation. The wavelet spectrum of discharge represents well the slow, middle and fast flow components of the system with transit times of 256, 12–64 and 2–12 days, respectively. Interestingly, these transit times are remarkably similar to those of the soil water reservoirs of the studied system, a small headwater catchment in the tropical Andes. This result needs further research because it opens the possibility of determining MMT on a fraction of the cost of isotopic based methods. The cross-power spectrum indicates that the error in the simulated discharge is more related to the misrepresentation of the fast and the middle flow components, despite limitations in the recharge period of the slow flow component. With respect to the representation of individual signals of the slow, middle and fast flows components, the three neurons were uncapable to individually represent such flows. However, the combination of pairs of these signals resemble the dynamics and the spectral content of the aforementioned flows signals. These results show some evidence that signal processing techniques may be used to infer information about the hydrological functioning of a basin.  相似文献   
12.
Long-lasting floods buffer the thermal regime of the Pampas   总被引:1,自引:0,他引:1  
The presence of large water masses influences the thermal regime of nearby land shaping the local climate of coastal areas by the ocean or large continental lakes. Large surface water bodies have an ephemeral nature in the vast sedimentary plains of the Pampas (Argentina) where non-flooded periods alternate with flooding cycles covering up to one third of the landscape for several months. Based on temperature records from 17 sites located 1 to 700 km away from the Atlantic coast and MODIS land surface temperature data, we explore the effects of floods on diurnal and seasonal thermal ranges as well as temperature extremes. In non-flooded periods, there is a linear increase of mean diurnal thermal range (DTR) from the coast towards the interior of the region (DTR increasing from 10 to 16 K, 0.79 K/100 km, r 2 = 0.81). This relationship weakens during flood episodes when the DTR of flood-prone inland locations shows a decline of 2 to 4 K, depending on surface water coverage in the surrounding area. DTR even approaches typical coastal values 500 km away from the ocean in the most flooded location that we studied during the three flooding cycles recorded in the study period. Frosts-free periods, a key driver of the phenology of both natural and cultivated ecosystems, are extended by up to 55 days during floods, most likely as a result of enhanced ground heat storage across the landscape (~2.7 fold change in day-night heat transfer) combined with other effects on the surface energy balance such as greater night evaporation rates. The reduced thermal range and longer frost-free periods affect plant growth development and may offer an opportunity for longer crop growing periods, which may not only contribute to partially compensating for regional production losses caused by floods, but also open avenues for flood mitigation through higher plant evapotranspirative water losses.  相似文献   
13.
Benthic organisms are among the most diverse and abundant in the marine realm, and some species are a key factor in studies related to bioengineering. However, their importance has not been well noted in biogeographic studies. Macrofaunal assemblages associated with subtidal beds of the ribbed mussel (Aulacomya atra) along South America were studied to assess the relationship between their diversity patterns and the proposed biogeographic provinces in the Southeastern Pacific and Southwestern Atlantic Oceans. Samples from ribbed mussel beds were obtained from 10 sites distributed from the Peruvian coast (17°S) to the Argentinean coast (41°S). The sampling included eight beds in the Pacific and two in the Atlantic and the collections were carried out using five 0.04 m2 quadrants per site. Faunal assemblages were assessed through classification analyses using binary and log‐transformed abundance data. Variation in the size and density of mussels, and in the species richness, abundance and structure of their faunal assemblages were tested using a permutational multivariate analysis of variance. Faunal assemblages showed a north–south latitudinal gradient along both the Pacific and Atlantic coasts. Binary and abundance data showed a difference in the resulting clustering arrangement of Pacific sites between 40°S and 44°S, indicating a pattern of continuity in the species distribution associated with biological substrates. At a regional scale, the distribution of species along the South American coast matched the general provincial pattern shown by prior studies, which show two biogeographic units on the Pacific coast separated by an intermediate (probably transitional) zone and a single province on the Atlantic coast extending up to Northern Argentina. Biological substrates such as ribbed mussel beds play an important ecological role by making a similar habitat type available on a large scale for a variety of invertebrate species. Despite such habitat homogeneity, however, the associated fauna exhibit marked distribution breaks, suggesting strong constraints on dispersal. This therefore suggests that macrofaunal assemblages could possibly be used as biogeographic indicators.  相似文献   
14.
Methods for evaluating the structural health of mechanical cables and detecting their imminent failure could prevent the loss of valuable equipment and, more importantly, the possible loss of human life.The non-destructive test methods available are: thorough visual examination and measurement of the external diameter; X-rays; (induced) wave propagation; acoustic emission; magnetostrictive sensors; infrared detection.A new method which employs a commercial optical fiber for detecting the breakage of individual wires in a rope is proposed in the present paper.  相似文献   
15.
16.
The study of the environmental factors that control evapotranspiration and the components of evapotranspiration leads to a better understanding of the actual evapotranspiration (ET) process that links the functioning of the soil, water and atmosphere. It also improves local, regional and global ET modelling. Globally, few studies so far focussed on the controls and components of ET in alpine grasslands, especially in mountainous sites such as the tussock grasslands located in the páramo biome (above 3300 m a.s.l.). The páramo occupies 35 000 km2 and provides water resources for many cities in the Andes. In this article, we unveiled the controls on ET and provided the first insights on the contribution of transpiration to ET. We found that the wet páramo is an energy-limited region and net radiation (Rn) is primarily controlling ET. ET was on average 1.7 mm/day. The monthly average evaporative fraction (ET/Rn) was 0.47 and it remained similar for wet and dry periods. The secondary controls on ET were wind speed, aerodynamic resistance and surface resistance that appeared more important for dry periods, where significantly higher ET rates were found (20% increase). During dry events, transpiration was on average 1.5 mm/day (range 0.7–2.7 mm/day), similar to other tussock grasslands in New Zealand (range 0.6–3.3 mm/day). Evidence showed interception contributes more to ET than transpiration. This study sets a precedent towards a better understanding of the evapotranspiration process and will ultimately lead to a better land-atmosphere fluxes modelling in the tropics.  相似文献   
17.
As a consequence of the remote location of the Andean páramo, knowledge on their hydrologic functioning is limited; notwithstanding, these alpine tundra ecosystems act as water towers for a large fraction of the society. Given the harsh environmental conditions in this region, year‐round monitoring is cumbersome, and it would be beneficial if the monitoring needed for the understanding of the rainfall–runoff response could be limited in time. To identify the hydrological response and the effect of temporal monitoring, a nested (n = 7) hydrological monitoring network was set up in the Zhurucay catchment (7.53 km2), south Ecuador. The research questions were as follows: (1) Can event sampling provide similar information in comparison with continuous monitoring, and (2) if so, how many events are needed to achieve a similar degree of information? A subset of 34 rainfall–runoff events was compared with monthly values derived from a continuous monitoring scheme from December 2010 to November 2013. Land cover and physiographic characteristics were correlated with 11 hydrological indices. Results show that despite some distinct differences between event and continuous sampling, both data sets reveal similar information; more in particular, the monitoring of a single event in the rainy season provides the same information as continuous monitoring, while during the dry season, ten events ought to be monitored. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
18.
In this study, the Mean Transit Time and Mixing Model Analysis methods are combined to unravel the runoff generation process of the San Francisco River basin (73.5 km2) situated on the Amazonian side of the Cordillera Real in the southernmost Andes of Ecuador. The montane basin is covered with cloud forest, sub‐páramo, pasture and ferns. Nested sampling was applied for the collection of streamwater samples and discharge measurements in the main tributaries and outlet of the basin, and for the collection of soil and rock water samples. Weekly to biweekly water grab samples were taken at all stations in the period April 2007–November 2008. Hydrometric data, Mean Transit Time and Mixing Model Analysis allowed preliminary evaluation of the processes controlling the runoff in the San Francisco River basin. Results suggest that flow during dry conditions mainly consists of lateral flow through the C‐horizon and cracks in the top weathered bedrock layer, and that all subcatchments have an important contribution of this deep water to runoff, no matter whether pristine or deforested. During normal to low precipitation intensities, when antecedent soil moisture conditions favour water infiltration, vertical flow paths to deeper soil horizons with subsequent lateral subsurface flow contribute most to streamflow. Under wet conditions in forested catchments, streamflow is controlled by near surface lateral flow through the organic horizon. Exceptionally, saturation excess overland flow occurs. By absence of the litter layer in pasture, streamflow under wet conditions originates from the A horizon, and overland flow. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
19.
The Southern Hemisphere westerly winds are an important component of the climate system at hemispheric and global scales. Variations in their intensity and latitudinal position through an ice-age cycle have been proposed as important drivers of global climate change due to their influence on deep-ocean circulation and changes in atmospheric CO2. The position, intensity, and associated climatology of the southern westerlies during the last glacial maximum (LGM), however, is still poorly understood from empirical and modelling standpoints. Here we analyse the behaviour of the southern westerlies during the LGM using four coupled ocean-atmosphere simulations carried out by the Palaeoclimate Modelling Intercomparison Project Phase 2 (PMIP2). We analysed the atmospheric circulation by direct inspection of the winds and by using a cyclone tracking software to indicate storm tracks. The models suggest that changes were most significant during winter and over the Pacific ocean. For this season and region, three out four models indicate decreased wind intensities at the near surface as well as in the upper troposphere. Although the LGM atmosphere is colder and the equator to pole surface temperature gradient generally increases, the tropospheric temperature gradients actually decrease, explaining the weaker circulation. We evaluated the atmospheric influence on the Southern Ocean by examining the effect of wind stress on the Ekman pumping. Again, three of the models indicate decreased upwelling in a latitudinal band over the Southern Ocean. All models indicate a drier LGM than at present with a clear decrease in precipitation south of 40°S over the oceans. We identify important differences in precipitation anomalies over the land masses at regional scale, including a drier climate over New Zealand and wetter over NW Patagonia.  相似文献   
20.
We investigated controls on the water chemistry of a South Ecuadorian cloud forest catchment which is partly pristine, and partly converted to extensive pasture. From April 2007 to May 2008 water samples were taken weekly to biweekly at nine different subcatchments, and were screened for differences in electric conductivity, pH, anion, as well as element composition. A principal component analysis was conducted to reduce dimensionality of the data set and define major factors explaining variation in the data. Three main factors were isolated by a subset of 10 elements (Ca2+, Ce, Gd, K+, Mg2+, Na+, Nd, Rb, Sr, Y), explaining around 90% of the data variation. Land-use was the major factor controlling and changing water chemistry of the subcatchments. A second factor was associated with the concentration of rare earth elements in water, presumably highlighting other anthropogenic influences such as gravel excavation or road construction. Around 12% of the variation was explained by the third component, which was defined by the occurrence of Rb and K and represents the influence of vegetation dynamics on element accumulation and wash-out. Comparison of base- and fast flow concentrations led to the assumption that a significant portion of soil water from around 30 cm depth contributes to storm flow, as revealed by increased rare earth element concentrations in fast flow samples. Our findings demonstrate the utility of multi-tracer principal component analysis to study tropical headwater streams, and emphasize the need for effective land management in cloud forest catchments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号