首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40520篇
  免费   7400篇
  国内免费   9694篇
测绘学   2253篇
大气科学   8928篇
地球物理   10746篇
地质学   19766篇
海洋学   4652篇
天文学   2132篇
综合类   4429篇
自然地理   4708篇
  2024年   133篇
  2023年   544篇
  2022年   1617篇
  2021年   1848篇
  2020年   1531篇
  2019年   1750篇
  2018年   2099篇
  2017年   1940篇
  2016年   2307篇
  2015年   1887篇
  2014年   2319篇
  2013年   2251篇
  2012年   2117篇
  2011年   2186篇
  2010年   2304篇
  2009年   2188篇
  2008年   2050篇
  2007年   2003篇
  2006年   1598篇
  2005年   1467篇
  2004年   1194篇
  2003年   1231篇
  2002年   1157篇
  2001年   1165篇
  2000年   1427篇
  1999年   2128篇
  1998年   1739篇
  1997年   1744篇
  1996年   1585篇
  1995年   1396篇
  1994年   1255篇
  1993年   1143篇
  1992年   888篇
  1991年   712篇
  1990年   531篇
  1989年   464篇
  1988年   426篇
  1987年   268篇
  1986年   234篇
  1985年   166篇
  1984年   109篇
  1983年   87篇
  1982年   109篇
  1981年   93篇
  1980年   53篇
  1979年   55篇
  1978年   20篇
  1977年   10篇
  1976年   16篇
  1958年   39篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
161.
Magnetohydrodynamics (MHD) is a fairly recent extension of the field of fluid mechanics. While much remains to be done, it has successfully been applied to the contemporary field of heliospheric space plasma research to evaluate the macroscopic picture of some vital topics via the use of conducting fluid equations and numerical modeling and simulations. Some representative examples from solar and interplanetary physics are described to demonstrate that the continuum approach to global problems (while keeping in mind the assumptions and limitations therein) can be very successful in providing insight and large scale interpretations of otherwise intractable problems in space physics.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   
162.
本文根据野外地质填图和水系位移测量结果,论述了香山-天景山弧形断裂带新生代有两个不同活动性质的阶段,即早期阶段的强烈挤压和晚期阶段的左旋走滑兼挤压。分析、讨论了不同活动阶段的时间界限和转变原因。指出了1709年中卫南71/_2级地震形变带的表现形式、延伸范围  相似文献   
163.
Trace and RE element geochemistry and genesis have been studied with respect to ferromanganese nodules from the sediments of the Pacific, Atlantic and Indian oceans.  相似文献   
164.
Nagai  F.  Wu  S. T.  Tandberg-Hanssen  E. 《Solar physics》1983,84(1-2):271-283
We have investigated numerically how a temperature difference between electrons and protons is produced in a flaring loop by adopting a one-fluid, two-temperature model instead of a single-temperature model. We have treated a case in which flare energy is released in the form of heating of electrons located in the top part of the loop.In this case, a large temperature difference (T e/T p 10) appears in the corona in the energy-input phase of the flare. When the material evaporated from the chromosphere fills the corona, the temperature difference in the loop begins to shrink rapidly from below. Eventually, in the loop apex, the proton temperature exceeds the electron temperature mainly due to cooling of the electrons by conduction down the loop and heating of the protons by compression of the ascending material. In the late phase of the flare (t 15 min from the flare onset), the temperature difference becomes less than 2% of the mean temperature of electrons and protons at every point in the loop.  相似文献   
165.
We present a detailed, new time scale for an orogenic cycle (oceanic accretion–subduction–collision) that provides significant insights into Paleozoic continental growth processes in the southeastern segment of the long-lived Central Asian Orogenic Belt (CAOB). The most prominent tectonic feature in Inner Mongolia is the association of paired orogens. A southern orogen forms a typical arc-trench complex, in which a supra-subduction zone ophiolite records successive phases during its life cycle: birth (ca. 497–477 Ma), when the ocean floor of the ophiolite was formed; (2) youth (ca. 473–470 Ma), characterized by mantle wedge magmatism; (3) shortly after maturity (ca. 461–450 Ma), high-Mg adakite and adakite were produced by slab melting and subsequent interaction of the melt with the mantle wedge; (4) death, caused by subduction of a ridge crest (ca. 451–434 Ma) and by ridge collision with the ophiolite (ca. 428–423 Ma). The evolution of the magmatic arc exhibits three major coherent phases: arc volcanism (ca. 488–444 Ma); adakite plutonism (ca. 448–438 Ma) and collision (ca. 419–415 Ma) of the arc with a passive continental margin. The northern orogen, a product of ridge-trench interaction, evolved progressively from coeval generation of near-trench plutons (ca. 498–461 Ma) and juvenile arc crust (ca. 484–469 Ma), to ridge subduction (ca. 440–434 Ma), microcontinent accretion (ca. 430–420 Ma), and finally to forearc formation. The paired orogens followed a consistent progression from ocean floor subduction/arc formation (ca. 500–438 Ma), ridge subduction (ca. 451–434 Ma) to microcontinent accretion/collision (ca. 430–415 Ma); ridge subduction records the turning point that transformed oceanic lithosphere into continental crust. The recognition of this orogenic cycle followed by Permian–early Triassic terminal collision of the CAOB provides compelling evidence for episodic continental growth.  相似文献   
166.
Timing of the Nihewan formation and faunas   总被引:2,自引:0,他引:2  
Magnetostratigraphic dating of the fluvio-lacustrine sequence in the Nihewan Basin, North China, has permitted the precise timing of the basin infilling and associated Nihewan mammalian faunas. The combined evidence of new paleomagnetic findings from the Hongya and Huabaogou sections of the eastern Nihewan Basin and previously published magnetochronological data suggests that the Nihewan Formation records the tectono-sedimentary processes of the Plio-Pleistocene Nihewan Basin and that the Nihewan faunas can be placed between the Matuyama-Brunhes geomagnetic reversal and the onset of the Olduvai subchron (0.78-1.95 Ma). The onset and termination of the basin deposition occurred just prior to the Gauss-Matuyama geomagnetic reversal and during the period from the last interglaciation to the late last glaciation, respectively, suggesting that the Nihewan Formation is of Late Pliocene to late Pleistocene age. The Nihewan faunas, comprising a series of mammalian faunas (such as Maliang, Donggutuo, Xiaochangliang, Banshan, Majuangou, Huabaogou, Xiashagou, Danangou and Dongyaozitou), are suggested to span a time range of about 0.8-2.0 Ma. The combination of our new and previously published magnetostratigraphy has significantly refined the chronology of the terrestrial Nihewan Formation and faunas.  相似文献   
167.
The primary occurrence of ruby in the Mogok area, northern Myanmar is exclusively found in marble along with spinel–forsterite-bearing marble and phlogopite–graphite marble. These marble units are enclosed within banded biotite–garnet–sillimanite–oligoclase gneisses. Samples of these marbles collected for C–O stable isotope analysis show two trends of δ13C–δ18O variation resulting most likely from fluid–rock interactions. Ruby-bearing marble and phlogopite–graphite marble follow a trend with coupled C–O depletion, whereas spinel–forsterite-bearing marble follows a δ18O depletion trend with relatively constant δ13C values. Ruby formation might have resulted from CO2-rich fluid–rock interaction, while spinel–forsterite-bearing marble was genetically related to CO2-poor fluid–rock interaction. Both fluids may have arisen from external sources. Based on graphite Raman spectral thermometry, the estimated temperature for phlogopite–graphite marble, and probably ruby-bearing marble, was lower than 607 °C, and for spinel–forsterite-bearing marble, lower than 710 °C. Contrasting C/O diffusion between graphite/ruby/spinel/forsterite and calcite, local variations of isotopic compositions of newly formed minerals as a result of non-pervasive fluid infiltration, and open-system isotopic disturbance during cooling may have affected C-/O-isotopic fractionations between minerals. The estimated high formation temperatures for ruby and spinel/forsterite imply that the parental fluids may have been related to nearby igneous intrusions and/or metamorphic processes. Whether these two types of fluid were genetically related is unclear based on the present data.  相似文献   
168.
印度共和国主要矿产资源及其地质特征   总被引:2,自引:0,他引:2  
印度共和国是南亚地区矿产资源比较丰富的国家,铁矿探明储量175.7亿吨;铝土矿探明储量26.54亿吨;锰矿探明储量1.35亿吨;铬铁矿储量5900万吨;重晶石储量3000万吨。目前,全印度已开发了89种矿产资源,其中有52种非金属矿产,11种金属矿产,22种稀有金属矿产,4种能源矿产。全国生产矿  相似文献   
169.
The crustal structure of the Dabie orogen was reconstructed by a combined study of U–Pb ages, Hf and O isotope compositions of zircons from granitic gneiss from North Dabie, the largest lithotectonic unit in the orogen. The results were deciphered from metamorphic history to protolith origin with respect to continental subduction and exhumation. Zircon U–Pb dating provides consistent ages of 751 ± 7 Ma for protolith crystallization, and two group ages of 213 ± 4 to 245 ± 17 Ma and 126 ± 4 to 131 ± 36 Ma for regional metamorphism. Majority of zircon Hf isotope analyses displays negative εHf(t) values of − 5.1 to − 2.9 with crust Hf model ages of 1.84 to 1.99 Ga, indicating protolith origin from reworking of middle Paleoproterozoic crust. The remaining analyses exhibit positive εHf(t) values of 5.3 to 14.5 with mantle Hf model ages of 0.74 to 1.11 Ga, suggesting prompt reworking of Late Mesoproterozoic to Early Neoproterozoic juvenile crust. Zircon O isotope analyses yield δ18O values of − 3.26 to 2.79‰, indicating differential involvement of meteoric water in protolith magma by remelting of hydrothermally altered low δ18O rocks. North Dabie shares the same age of Neoproterozoic low δ18O protolith with Central Dabie experiencing the Triassic UHP metamorphism, but it was significantly reworked at Early Cretaceous in association with contemporaneous magma emplacement. The Rodinia breakup at about 750 Ma would lead to not only the reworking of juvenile crust in an active rift zone for bimodal protolith of Central Dabie, but also reworking of ancient crust in an arc-continent collision zone for the North Dabie protolith. The spatial difference in the metamorphic age (Triassic vs. Cretaceous) between the northern and southern parts of North Dabie suggests intra-crustal detachment during the continental subduction. Furthermore, the Dabie orogen would have a three-layer structure prior to the Early Cretaceous magmatism: Central Dabie in the upper, North Dabie in the middle, and the source region of Cretaceous magmas in the lower.  相似文献   
170.
A combined study of petrography, whole-rock major and trace elements as well as Rb?Sr and Sm?Nd isotopes, and mineral oxygen isotopes was carried out for two groups of low-T/UHP granitic gneiss in the Dabie orogen. The results demonstrate that metamorphic dehydration and partial melting occurred during exhumation of deeply subducted continent. Zircon δ18O values of ? 2.8 to + 4.7‰ for the gneiss are all lower than normal mantle values of 5.3 ± 0.3‰, consistent with 18O depletion of protolith due to high-T meteoric-hydrothermal alteration at mid-Neoproterozoic. Most samples have extremely low 87Sr/86Sr ratios at t1 = 780 Ma, but very high 87Sr/86Sr ratios at t2 = 230 Ma. This suggests intensive fluid disturbance due to the hydrothermal alteration of protoliths during Neoproterozoic magma emplacement and the metamorphic dehydration during Triassic continental collision. Rb–Sr isotopes, Th/Ta vs. La/Ta and Th/Hf vs. La/Nb relationships suggest that Group I gneiss experienced lower degrees of hydrothermal alteration, but higher degrees of dehydration, than Group II gneiss. The two groups of gneiss have similar patterns of REE and trace element partition. Group I gneiss displays good correlations between Nb and LREEs but no correlations between Nb and LILEs (Rb, Ba, Pb, Th and U), indicating differential mobilities of LILEs during the dehydration. Thus the correlation between Nb and LREEs is inherited from protolith rather than caused by metamorphic modification. Relative to Group I gneiss, Group II gneiss has stronger negative Eu anomaly, lower contents of Sr and Ba but higher contents of Rb, Th and U. In particular, Nb correlates with LILEs (e.g., Rb, Sr, Ba, Th and U), but not with LREEs (La and Ce). This may indicate decoupling between the dehydration and LILEs transport during continental collision. Furthermore, dehydration melting may have occurred due to breakdown of muscovite during “hot” exhumation. Group II gneiss has extremely low contents of FeO + MgO + TiO2 (1.04 to 2.08 wt.%), high SiO2 contents of 75.33 to 78.23 wt%, and high total alkali (Na2O + K2O) contents (7.52 to 8.92 wt.%), comparable with compositions predicted from partial melting of felsic rocks by experimental studies. Almost no UHP metamorphic minerals survived; felsic veins of fine-grain minerals occurs locally between coarse-grain minerals, resulting in a kind of metatexite migmatites due to dehydration melting without considerable escape of felsic melts from the host gneiss. In contrast, Group I gneiss only shows metamorphic dehydration. Therefore, the two groups of gneiss show contrasting behaviors of fluid–rock interaction during the continental collision.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号