首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   9篇
  国内免费   3篇
测绘学   7篇
大气科学   6篇
地球物理   39篇
地质学   64篇
海洋学   15篇
天文学   15篇
综合类   1篇
自然地理   50篇
  2021年   2篇
  2020年   4篇
  2019年   1篇
  2018年   7篇
  2017年   7篇
  2016年   5篇
  2015年   5篇
  2014年   6篇
  2013年   14篇
  2012年   4篇
  2011年   8篇
  2010年   5篇
  2009年   10篇
  2008年   12篇
  2007年   6篇
  2006年   15篇
  2005年   6篇
  2004年   7篇
  2003年   7篇
  2002年   9篇
  2001年   9篇
  2000年   6篇
  1999年   4篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有197条查询结果,搜索用时 15 毫秒
121.
以加拿大多伦多市某工程为例,介绍了在复杂地质条件下采用局部桩筏基础(PPRF)的设计及施工问题;探讨了设计PPRF的决定性因素;在保持PPRF设计的完整性前提下,提出了单位沉降量的准则,并用于筏板和桩的设计;计算了PPRF的滑移及转动;最后,采用有效方法对该工程采用的局部桩筏基础进行了计算分析.结果表明,PPRF的设计主要取决于侧向土压力、分布不均的建筑荷载以及地基土的非均匀承载力,工程桩应主要布置在沉降较大的区域,即位于筏板基础承受高压力而土体承载力较低的西北部.探讨局部桩筏基础的设计与施工为该类型工程的基础设计提供了一个新的解决途径.  相似文献   
122.
Regular observations by the All-Sky Monitor aboard the Rossi X-ray Timing Explorer satellite have yielded well-sampled light curves with a time baseline of over 10 years. We find that up to eight of the 16 brightest persistent low-mass X-ray binaries (LMXBs) show significant, possible sinusoidal, variations with periods of the order of 10 years. We speculate on its possible origin and prevalence in the population of LMXBs, and we find the presence of a third object in the system, or long-period variability intrinsic to the donor star, as being attractive origins for the X-ray flux modulation we detect. For some of the objects in which we do not detect a signal, there is substantial short-term variation which may hide modest modulation on long time-scales. Decade time-scale modulations may thus be even more common.  相似文献   
123.
The intensity of the geomagnetic field varies over different time scales. Yet, constraints on the maximum intensity of the field as well as for its maximum rate of change are inadequate due to poor temporal resolution and large uncertainties in the geomagnetic record. The purpose of this study is to place firm limits on these fundamental properties by constructing a high-resolution archaeointensity record of the Levant from the 11th century to the early 9th century BCE, a period over which the geomagnetic field reached its maximum intensity in Eurasia over the past 50,000 years. We investigate a 14C-dated sequence of ten layers of slag material, which accumulated within an ancient industrial waste mound of an Iron Age copper-smelting site in southern Israel. Depositional stratigraphy constrains relative ages of samples analyzed for paleointensity, and 14C dates from different horizons of the mound constrain the age of the whole sequence. The analysis yielded 35 paleointenisty data points with accuracy better than 94% and precision better than 6%, covering a period of less than 350 years, most probably 200 years. We construct a new high-resolution quasi-continuous archaeointensity curve of the Levant that displays two dramatic spikes in geomagnetic intensity, each corresponding to virtual axial dipole moment (VADM) in excess of 200 ZAm2. The geomagnetic spikes rise and fall over a period of less than 30 years and are associated with VADM fluctuations of at least 70 ZAm2. Thus, the Levantine archaeomagnetic record places new constraints on maximum geomagnetic intensity as well as for its rate of change. Yet, it is not clear whether the geomagnetic spikes are local non-dipolar features or a geomagnetic dipolar phenomenon.  相似文献   
124.
Polygonal patterned ground in polar regions of both Earth and Mars has received considerable attention. In comparison with the size, shape, and arrangement of the polygons, the diverse micro-relief and topography (termed here simply “relief”) of polygonal patterned ground have been understudied. And yet, the relief reflects important conditions and processes occurring directly below the ground surface, and it can be observed readily in the field and through remote sensing. Herein, we describe the relief characteristic of the simplest and relatively young form of patterned ground in the Dry Valleys of Antarctic. We also develop a numerical model to examine the generation of relief due to subsurface material being shouldered aside contraction cracks by incremental sand wedges growth, and to down-slope creep of loose granular material on the surface. We model the longterm subsurface deformation of ice-cemented permafrost as a non-linear viscous material. Our modeling is guided and validated using decades of field measurements of surface displacements of the permafrost and relief. This work has implications for assessing the activity of surfaces on Earth and Mars, and much larger scale potential manifestations of incremental wedging in icy material, namely the distinct paired ridges on Europa.  相似文献   
125.
We use an early twentieth century (1908?C1958) atmospheric reanalysis, based on assimilation of surface and sea level pressure observations, to contrast atmospheric circulation during two periods of persistent drought in North America: 1932?C1939 (the ??Dust Bowl??) and 1948?C1957. Primary forcing for both droughts is believed to come from anomalous sea surface temperatures (SSTs): a warm Atlantic and a cool eastern tropical Pacific. For boreal winter (October?CMarch) in the 1950s, a stationary wave pattern originating from the tropical Pacific is present, with positive centers over the north Pacific and north Atlantic ocean basins and a negative center positioned over northwest North America and the tropical/subtropical Pacific. This wave train is largely absent for the 1930s drought; boreal winter height anomalies are organized much more zonally, with positive heights extending across northern North America. For boreal summer (April?CSeptember) during the 1930s, a strong upper level ridge is centered over the Great Plains; this feature is absent during the 1950s and appears to be linked to a weakening of the Great Plains low-level jet (GPLLJ). Subsidence anomalies are co-located over the centers of each drought: in the central Great Plains for the 1930s and in a band extending from the southwest to the southeastern United States for the 1950s. The location and intensity of this subsidence during the 1948?C1957 drought is a typical response to a cold eastern tropical Pacific, but for 1932?C1939 deviates in terms of the expected intensity, location, and spatial extent. Overall, circulation anomalies during the 1950s drought appear consistent with the expected response to the observed SST forcing. This is not the case for the 1930s, implying some other causal factor may be needed to explain the Dust Bowl drought anomalies. In addition to SST forcing, the 1930s were also characterized by massive alterations to the land surface, including regional-scale devegetation from crop failures and intensive wind erosion and dust storms. Incorporation of these land surface factors into a general circulation model greatly improves the simulation of precipitation and subsidence anomalies during this drought, relative to simulations with SST forcing alone. Even with additional forcing from the land surface, however, the model still has difficulty reproducing some of the other circulation anomalies, including weakening of the GPLLJ and strengthening of the upper level ridge during AMJJAS. This may be due to either weaknesses in the model or uncertainties in the boundary condition estimates. Still, analysis of the circulation anomalies supports the conclusion of an earlier paper (Cook et?al. in Proc Natl Acad Sci 106:4997, 2009), demonstrating that land degradation factors are consistent with the anomalous nature of the Dust Bowl drought.  相似文献   
126.
127.
128.
129.
We have analysed LAGEOS II perigee rate and eccentricity vector excitation residuals over a period of about 7.8 years, adjusting and computing the satellite orbit with the full set of dynamical models included in the GEODYN II software code. The long-term behaviour of these orbital residuals appears to be characterised by several distinct frequencies which are a clear signature of the Yarkovsky-Schach perturbing effect. This non-gravitational perturbation is not included in the GEODYN II models for the orbit determination and analysis. Through an independent numerical analysis, and using the new LOSSAM model to represent the spin-axis behaviour of the satellite, we propagated the Yarkovsky-Schach effect on LAGEOS II perigee rate and compared the results obtained with the orbital residuals. We have thus been able to satisfactorily fit the amplitude of the Yarkovsky-Schach effect to the observed residuals. Our approach here has proven very successful with very positive results. We have been able to obtain a fractional reduction of about 40% of the post-fit rms with respect to the pre-fit value. When analysing the eccentricity vector residuals, we have been able to obtain a better result in the case of the real component, with a fractional reduction of the post-fit rms of about 49% of the initial value. The analysis of the effect's imaginary component in the eccentricity vector rate is more complicated and deserves additional scrutiny. In this case we need a deeper study which includes the analysis of other unmodelled and mismodelled effects acting on the imaginary component. The study performed in this paper will be of significant relevance not only for the geophysical applications involving LAGEOS II orbit analysis, but also for a refined re-analysis of the general relativistic precession produced by the Earth angular momentum, i.e., the Lense-Thirring effect.  相似文献   
130.
Ron Oxburgh 《地学学报》1993,5(3):212-212
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号