首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   741篇
  免费   27篇
  国内免费   7篇
测绘学   23篇
大气科学   53篇
地球物理   158篇
地质学   232篇
海洋学   77篇
天文学   152篇
综合类   3篇
自然地理   77篇
  2021年   7篇
  2020年   12篇
  2019年   17篇
  2018年   22篇
  2017年   17篇
  2016年   24篇
  2015年   15篇
  2014年   22篇
  2013年   47篇
  2012年   20篇
  2011年   45篇
  2010年   16篇
  2009年   29篇
  2008年   28篇
  2007年   38篇
  2006年   26篇
  2005年   37篇
  2004年   24篇
  2003年   10篇
  2002年   21篇
  2001年   25篇
  2000年   20篇
  1999年   16篇
  1998年   13篇
  1997年   11篇
  1996年   8篇
  1995年   7篇
  1994年   6篇
  1993年   10篇
  1992年   12篇
  1991年   9篇
  1990年   5篇
  1989年   10篇
  1988年   9篇
  1987年   10篇
  1986年   7篇
  1985年   7篇
  1984年   12篇
  1983年   7篇
  1982年   8篇
  1981年   7篇
  1980年   9篇
  1978年   8篇
  1977年   4篇
  1976年   5篇
  1975年   9篇
  1974年   4篇
  1973年   7篇
  1971年   5篇
  1970年   5篇
排序方式: 共有775条查询结果,搜索用时 531 毫秒
691.
In the marine environment, stability of the glacier terminus and the location of subglacial streams are the dominant controls on the distribution of grounding-line deposits within morainal banks. A morainal bank complex in Muir Inlet, Glacier Bay, SE Alaska, is used to develop a model of terminus stability and location of subglacial streams along the grounding line of temperate marine glaciers. This model can be used to interpret former grounding-line conditions in other glacimarine settings from the facies architecture within morainal bank deposits.The Muir Inlet morainal bank complex was deposited between 1860 A.D. and 1899 A.D., and historical observations provide a record of terminus positions, glacial retreat rates and sedimentary sources. These data are used to reconstruct the depositional environment and to develop a correlation between sedimentary facies and conditions along the grounding line.Four seismic facies identified on the high-resolution seismic-reflection profiles are used to interpret sedimentary facies within the morainal bank complex. Terminus stability is interpreted from the distribution of sedimentary facies within three distinct submarine geomorphic features, a grounding-line fan, stratified ridges, and a field of push ridges. The grounding-line fan was deposited along a stable terminus and is represented on seismic-reflection profiles by two distinct seismic facies, a proximal and a distal fan facies. The proximal fan facies was deposited at the efflux of subglacial streams and indicates the location of former glacifluvial discharges into the sea. Stratified ridges formed as a result of the influence of a quasi-stable terminus on the distribution of sedimentary facies along the grounding line. A field of push ridges formed along the grounding line of an unstable terminus that completely reworked the grounding-line deposits through glacitectonic deformation.Between 1860 A.D. and 1899 A.D. (39 years),

m3 of sediment were deposited within the Muir Inlet morainal bank complex at an average annual sediment accumulation rate of

m3/a. This rate represents the annual sediment production capacity of the glacier when the Muir Inlet drainage basin is filled with glacial ice.  相似文献   
692.
693.
Coral community structures at eleven fringing reef sites were investigated along the coast of Peninsular Malaysia. Estimated coverage of coral communities is examined by applying quantitative digital image analysis to the line transect method. Four coral community types were characterized by dominant genera and lifeforms: Acropora branching community, Montipora-Acropora community, Porites massive community, and Heliopora community. Live coral coverage in all study sites ranged from 17.9% to 68.6%. Most reefs were in “fair” condition while some reefs were shown to be in “poor” condition. Coral community structures among the study sites were divided into the west coast of Peninsular Malaysia with a dominant Porites massive lifeform, and the east coast with a variety of lifeform categories of Montipora and Acropora. Physical effects such as the monsoon wind regime and sedimentation are likely to influence the formation of dominant coral communities around Peninsular Malaysia.  相似文献   
694.
695.
696.
697.
Coronal mass ejection transients observed with the white light coronagraph on Skylab are found to be associated with several other forms of solar activity. There is a strong correlation between such mass ejection transients and chromospheric H activity, with three-quarters of the transients apparently originating in or near active regions. We infer that 40% of transients are associated with flares, 50% are associated with eruptive prominences solely (without flares), and more than 70% are associated with eruptive prominences or filament disappearances (with or without flares). Nine of ten flares which displayed apparent mass ejections of H-emitting material from the flare site could be associated with coronal transients. Within each class of activity, the more energetic events are more likely to be associated with an observable mass ejection.Now at Los Alamos Scientific Laboratories, Los Alamos, NM., U.S.A.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   
698.
Climate model simulations available from the PMIP1, PMIP2 and CMIP (IPCC-AR4) intercomparison projects for past and future climate change simulations are examined in terms of polar temperature changes in comparison to global temperature changes and with respect to pre-industrial reference simulations. For the mid-Holocene (MH, 6,000 years ago), the models are forced by changes in the Earth’s orbital parameters. The MH PMIP1 atmosphere-only simulations conducted with sea surface temperatures fixed to modern conditions show no MH consistent response for the poles, whereas the new PMIP2 coupled atmosphere–ocean climate models systematically simulate a significant MH warming both for Greenland (but smaller than ice-core based estimates) and Antarctica (consistent with the range of ice-core based range). In both PMIP1 and PMIP2, the MH annual mean changes in global temperature are negligible, consistent with the MH orbital forcing. The simulated last glacial maximum (LGM, 21,000 years ago) to pre-industrial change in global mean temperature ranges between 3 and 7°C in PMIP1 and PMIP2 model runs, similar to the range of temperature change expected from a quadrupling of atmospheric CO2 concentrations in the CMIP simulations. Both LGM and future climate simulations are associated with a polar amplification of climate change. The range of glacial polar amplification in Greenland is strongly dependent on the ice sheet elevation changes prescribed to the climate models. All PMIP2 simulations systematically underestimate the reconstructed glacial–interglacial Greenland temperature change, while some of the simulations do capture the reconstructed glacial–interglacial Antarctic temperature change. Uncertainties in the prescribed central ice cap elevation cannot account for the temperature change underestimation by climate models. The variety of climate model sensitivities enables the exploration of the relative changes in polar temperature with respect to changes in global temperatures. Simulated changes of polar temperatures are strongly related to changes in simulated global temperatures for both future and LGM climates, confirming that ice-core-based reconstructions provide quantitative insights on global climate changes. An erratum to this article can be found at  相似文献   
699.
Lava lakes, consisting of molten degassing lava in summit craters of active basaltic volcanoes, sometimes exhibit complex cycles of filling and emptying on time-scales of hours to weeks such as recorded at Pu’u’O’o in Hawaii and Oldoinyo Lengai in Tanzania. Here we report on a new series of analogue laboratory experiments of two-phase flow in a reservoir-conduit-lava lake system which spontaneously generates oscillations in the depth of liquid within the lake. During the recharge phase, gas supplied from a subsurface reservoir of degassing magma drives liquid magma up the conduit, causing the lake to fill. As the magmastatic pressure in the lake increases, the upward supply of magma, driven by the gas bubbles, falls. Eventually the upflow becomes unstable, and liquid drains downwards from the lake, driven by the magmastatic pressure of the overlying lake, suppressing the ascent of any more bubbles from the chamber. At a later stage, once the lake has drained sufficiently, the descent speed of liquid through the conduit decreases below the ascent speed of the bubbles, and the recharge cycle resumes. Application of a quantitative model of the experiments to the natural system is broadly consistent with field data.  相似文献   
700.
Crust formation on basaltic lava flows dictates conditions of both flow cooling and emplacement. For this reason, flow histories are dramatically different depending on whether lava is transported through enclosed lava tubes or through open channels. Recent analog experiments in straight uniform channels (Griffiths et al. J Fluid Mech 496:33–62, 2003) have demonstrated that tube flow, dictated by a stationary surface crust, can be distinguished from a mobile crust regime, where a central solid crust is separated from channel walls by crust-free shear zones, by a simple dimensionless parameter ϑ, such that ϑ<25 produces tube flow and ϑ>25 describes the mobile crust regime. ϑ combines a previously determined parameter ψ, which describes the balance between the formation rate of surface solid and the shear strain that disrupts the solid crust, with the effects of thermal convection (described by the Rayleigh number Ra).Here we explore ways in which ϑ can be used to describe the behavior of basaltic lava channels. To do this we have extended the experimental approach to examine the effects of channel irregularities (expansions, contractions, sinuosity, and bottom roughness) on crust formation and disruption. We find that such changes affect local flow behavior and can thus change channel values of ϑ. For example, gradual widening of a channel results in a decrease in flow velocity that causes a decrease in ϑ and may allow a down-flow transition from the mobile crust to the tube regime. In contrast, narrowing of the channel causes an increase in flow velocity (increasing ϑ), thus inhibiting tube formation.We also quantify the fraction of surface covered by crust in the mobile crust regime. In shallow channels, variations in crust width (d c) with channel width (W) are predicted to follow d cW 5/3. Analysis of channelized lava flows in Hawaii shows crustal coverage consistent with this theoretical result along gradually widening or narrowing channel reaches. An additional control on crustal coverage in both laboratory and basaltic flows is disruption of surface crust because of flow acceleration through constrictions, around bends, and over breaks in slope. Crustal breakage increases local rates of cooling and may cause local blockage of the channel, if crusts rotate and jam in narrow channel reaches. Together these observations illustrate the importance of both flow conditions and channel geometry on surface crust development and thus, by extension, on rates and mechanisms of flow cooling. Moreover, we note that this type of analysis could be easily extended through combined use of FLIR and LiDAR imaging to measure crustal coverage and channel geometry directly.Editorial responsibility: A. Harris  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号