首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5094篇
  免费   216篇
  国内免费   97篇
测绘学   166篇
大气科学   566篇
地球物理   1432篇
地质学   2211篇
海洋学   197篇
天文学   605篇
综合类   85篇
自然地理   145篇
  2022年   46篇
  2021年   73篇
  2020年   66篇
  2019年   40篇
  2018年   168篇
  2017年   158篇
  2016年   241篇
  2015年   170篇
  2014年   263篇
  2013年   311篇
  2012年   259篇
  2011年   197篇
  2010年   247篇
  2009年   254篇
  2008年   190篇
  2007年   144篇
  2006年   122篇
  2005年   130篇
  2004年   98篇
  2003年   79篇
  2002年   85篇
  2001年   94篇
  2000年   81篇
  1999年   84篇
  1998年   98篇
  1997年   68篇
  1996年   81篇
  1995年   66篇
  1994年   66篇
  1993年   49篇
  1992年   42篇
  1991年   40篇
  1990年   42篇
  1989年   44篇
  1988年   29篇
  1987年   43篇
  1986年   34篇
  1985年   38篇
  1984年   49篇
  1983年   55篇
  1982年   41篇
  1981年   38篇
  1980年   41篇
  1979年   49篇
  1978年   43篇
  1977年   38篇
  1976年   34篇
  1975年   50篇
  1974年   44篇
  1973年   41篇
排序方式: 共有5407条查询结果,搜索用时 31 毫秒
121.
Biocrusts abound in southern Israel, covering the Hallamish dune field near Nizzana (NIZ) in the Negev (mean annual precipitation of 95 mm) and the coast of Nizzanim (NIM) near Ashdod (mean annual precipitation of 500 mm). While the hydrological response of the NIZ crust to natural rain events was thoroughly investigated, no data is available on the hydrological response of the NIM crust. Runoff was monitored in runoff plots during the years 2005–2008, and in addition, sprinkling experiments were carried out on NIM and NIZ crusts. For the evaluation of the possible factors that may control runoff initiation, fine content of the parent material, crust thickness, compressional strength, hydrophobicity, surface microrelief, organic matter, biomass (chlorophyll a and total carbohydrates) and the crust's species composition of NIM were studied and compared to that of NIZ. The data showed that in comparison to the NIZ crust that readily generated runoff, no runoff was produced by the NIM crust. This was so despite the fact that (1) Microculeus vaginatus predominated in both crusts, (2) the substantially higher rain intensities in NIM, (3) the greater thickness and higher chlorophyll content and (4) the lower microrelief at NIM in comparison to NIZ. The lack of runoff in NIM was explained by its low amounts of exopolysaccharides that did not suffice to affectively clog the surface and in turn to facilitate runoff initiation. The absence of runoff and its consequences on the NIM ecosystem are discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
122.
Lacustrine groundwater discharge (LGD) transports nutrients from a catchment to a lake, which may fuel eutrophication, one of the major threats to our fresh waters. Unfortunately, LGD has often been disregarded in lake nutrient studies. Most measurement techniques are based on separate determinations of volume and nutrient concentration of LGD: Loads are calculated by multiplying seepage volumes by concentrations of exfiltrating water. Typically low phosphorus (P) concentrations of pristine groundwater often are increased due to anthropogenic sources such as fertilizer, manure or sewage. Mineralization of naturally present organic matter might also increase groundwater P. Reducing redox conditions favour P transport through the aquifer to the reactive aquifer‐lake interface. In some cases, large decreases of P concentrations may occur at the interface, for example, due to increased oxygen availability, while in other cases, there is nearly no decrease in P. The high reactivity of the interface complicates quantification of groundwater‐borne P loads to the lake, making difficult clear differentiation of internal and external P loads to surface water. Anthropogenic sources of nitrogen (N) in groundwater are similar to those of phosphate. However, the environmental fate of N differs fundamentally from P because N occurs in several different redox states, each with different mobility. While nitrate behaves essentially conservatively in most oxic aquifers, ammonium's mobility is similar to that of phosphate. Nitrate may be transformed to gaseous N2 in reducing conditions and permanently removed from the system. Biogeochemical turnover of N is common at the reactive aquifer‐lake interface. Nutrient loads from LGD were compiled from the literature. Groundwater‐borne P loads vary from 0.74 to 2900 mg PO4‐P m?2 year?1; for N, these loads vary from 0.001 to 640 g m?2 year?1. Even small amounts of seepage can carry large nutrient loads due to often high nutrient concentrations in groundwater. Large spatial heterogeneity, uncertain areal extent of the interface and difficult accessibility make every determination of LGD a challenge. However, determinations of LGD are essential to effective lake management. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
123.
Blueschist facies rocks in the Yuli Belt of Taiwan's Central Range record ongoing subduction of the Eurasian plate. We present a prograde Lu–Hf garnet–whole‐rock age of 5.1 ± 1.7 Ma from a retrogressed blueschist in the Yuli Belt. This age is considerably younger than the previously assumed age of 14–8 Ma for high‐pressure metamorphism in the Yuli Belt and represents the youngest Lu–Hf garnet age ever recorded for blueschist facies metamorphism. The age sheds new light on the palaeogeographic origin and exhumation scenario of the Yuli Belt. We propose that the Yuli Belt originated from the ocean–continent boundary of the Chinese passive margin. It was subducted eastward during collision with the Luzon island arc and rapidly exhumed when the forearc lithosphere was removed from above the continental slab by discrete subduction (extraction). This process reduces the pressure above the continental slab and may prompt the ascent of subducted crust into the opening gap. Thus, it can control the exhumation of high‐pressure rocks.  相似文献   
124.
125.
126.
127.
128.
129.
130.
This study has investigated the use of the artificial sweetener acesulfame and the magnetic resonance imaging contrast agent gadolinium as quantitative tracers for river water infiltration into shallow groundwater. The influence of a river on alluvial groundwater in a subalpine catchment in western Europe has been assessed using the ‘classical’ hydrochemical tracer chloride and the trace contaminants acesulfame and anthropogenic gadolinium. Mixing ratios for riverine bank filtrate with ambient groundwater and the uncertainties associated with the temporal and spatial tracer variability were calculated using acesulfame and gadolinium and compared with those obtained using chloride. The temporal variability of tracer concentrations in river water of gadolinium (standard deviation SD: 63%) and acesulfame (SD: 71%) both exceeded that of chloride (SD: 27%), and this was identified as the main source of uncertainty in the mixing analysis. Similar spatial distributions were detected in the groundwater for chloride and gadolinium, but not for acesulfame. Mixing analyses using acesulfame resulted in calculated mixing ratios that differed from those obtained using gadolinium and chloride by up to 83% and 92%, respectively. At the investigated site, which had oxic conditions and moderate temperatures, acesulfame was found to be a less reliable tracer than either gadolinium or chloride, probably because of natural attenuation and input from other sources. There was no statistically significant difference between the mixing ratios obtained using chloride or gadolinium, the mixing ratios obtained using gadolinium were 40–50% lower than those obtained using chloride. This is mainly due to a bias of the mean gadolinium concentration in river water towards higher values. In view of the uncertainties of the two tracers, neither could be preferred over the other for the quantification of bank filtrate in groundwater. At this specific site gadolinium was able to reliably identify river water infiltration and was a more precise tracer than chloride at low mixing ratios (<20%), because of the exclusive occurrence of gadolinium in river water and its high dynamic range. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号