首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   7篇
  国内免费   2篇
测绘学   5篇
大气科学   18篇
地球物理   43篇
地质学   80篇
海洋学   10篇
天文学   3篇
综合类   6篇
自然地理   5篇
  2023年   1篇
  2022年   4篇
  2021年   9篇
  2020年   15篇
  2019年   3篇
  2018年   20篇
  2017年   15篇
  2016年   19篇
  2015年   9篇
  2014年   12篇
  2013年   15篇
  2012年   7篇
  2011年   12篇
  2010年   6篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1976年   1篇
排序方式: 共有170条查询结果,搜索用时 437 毫秒
71.
Using kriging has been accepted today as the most common method of estimating spatial data in such different fields as the geosciences. To be able to apply kriging methods, it is necessary that the data and variogram model parameters be precise. To utilize the imprecise (fuzzy) data and parameters, use is made of fuzzy kriging methods. Although it has been 30 years since different fuzzy kriging algorithms were proposed, its use has not become as common as other kriging methods (ordinary, simple, log, universal, etc.); lack of a comprehensive software that can perform, based on different fuzzy kriging algorithms, the related calculations in a 3D space can be the main reason. This paper describes an open-source software toolbox (developed in Matlab) for running different algorithms proposed for fuzzy kriging. It also presents, besides a short presentation of the fuzzy kriging method and introduction of the functions provided by the FuzzyKrig toolbox, 3 cases of the software application under the conditions where: 1) data are hard and variogram model parameters are fuzzy, 2) data are fuzzy and variogram model parameters are hard, and 3) both data and variogram model parameters are fuzzy.  相似文献   
72.
The Beerkan method based on in situ single‐ring water infiltration experiments along with the relevant specific Beerkan estimation of soil transfer parameters (BEST) algorithm is attractive for simple soil hydraulic characterization. However, the BEST algorithm may lead to erroneous or null values for the saturated hydraulic conductivity and sorptivity especially when there are only few infiltration data points under the transient flow state, either for sandy soil or soils in wet conditions. This study developed an alternative algorithm for analysis of the Beerkan infiltration experiment referred to as BEST‐generalized likelihood uncertainty estimation (GLUE). The proposed method estimates the scale parameters of van Genuchten water retention and Brooks–Corey hydraulic conductivity functions through the GLUE methodology. The GLUE method is a Bayesian Monte Carlo parameter estimation technique that makes use of a likelihood function to measure the goodness‐of‐fit between modelled and observed data. The results showed that using a combination of three different likelihood measurements based on observed transient flow, steady‐state flow and experimental steady‐state infiltration rate made the BEST‐GLUE procedure capable of performing an efficient inverse analysis of Beerkan infiltration experiments. Therefore, it is more applicable for a wider range of soils with contrasting texture, structure, and initial and saturated water content. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
73.
74.
This study identifies the coping and adaptation behavior of the farm households and also examines the factors that influence farmers’ choice for drought-induced adaptation strategies. The study employs a multivariate probit model on 215 farm households’ survey data from northwest Balochistan, Pakistan. The findings reveal that the farmers have shown considerable fortitude in coping with the impacts of drought on their agro-based practices and employed several adaptation initiatives both at on-farm and off-farm levels. These include crop management, water management, adjustment in agricultural inputs, income diversification, economization of expenditure and consumption smoothing, migrating to other places to seek alternative sources of income, assets depletion, and borrowing. Empirically, it is depicted that landholding, annual income, livestock ownership, credit access, farmer-to-farmer extension, GOs/NGOs support increase the probability of farmers’ decision to cope and adapt better with drought hazard. This study implies for specific policy and practice-oriented solutions in order to cope with and adapt in drought situation.  相似文献   
75.
Flood spreading is one of the suitable strategies to control and benefit from floods which in turn improve the groundwater recharge, makes soil more fertile, and increases nutrients in soil. It is also a method for reusing sediment, which is usually wasted. Thus, selection of suitable areas for flood spreading and directing the flood water into permeable formations are amongst the most effective strategies in flood spreading projects. Having combined analytic hierarchy process (AHP) of multi-criteria decision analysis and genetic algorithm (GA) of artificial intelligence approaches, this paper addresses the problem of finding the most suitable area location for flood spreading operation in the Gareh Bygone Plain of Iran. To this end, the nine effective geodata layers including slope, alluvium thickness, geology, morphology, electrical conductivity, land use, drainage density, aquifer transmissivity, and elevation were prepared in geographic information system environment. This stage was followed by elimination of the exclusionary areas for flood spreading while determining the potentially suitable ones. Having closely examined the potentially suitable areas using the proposed methodology, the land suitability map for flood spreading was produced. The AHP and GA were used for ranking all the alternatives and weighting the criteria involved, respectively. The results of the study showed that most suitable areas for the artificial groundwater recharge are located in Quaternary Qft 2 and Qsf geologic units and in morphological units of pediment and Alluvial fans with slopes not exceeding 2 %. Finally, further evidence for the acceptable efficiency of the integrated AHP–GA method in locating most suitable flood spreading areas have been provided by such significant spatial coincidence between the produced map and the control areas located near Kowsar research station, where the earlier flood spreading projects were successfully performed.  相似文献   
76.
The selection of an optimal reclamation method is one of the most important portions of the surface mining design. There are many factors in this problem which seriously influence decision-making. The fuzzy set theory was applied due to the effect of uncertain parameters involved in the decision-making process. Therefore, the fuzzy multi-attribute decision-making method was proposed. The aim of this study is to use the fuzzy technique for order preference by similarity to ideal solution method for ranking the optimal post-mining land-use and the fuzzy analytic hierarchy process method in order to determine the weights of each criterion. This approach is applied to the surface coal mine by employing 28 criteria which influence the decision-making procedure. The TOPSIS and AHP methods have been the most used methods of mining decision-making and demonstrated their ability to make critical decisions. By evaluating the alternatives and considering effective criteria with proposed methods, agriculture is the optimal post-mining land-use.  相似文献   
77.
It is well accepted within the scientific community that a large ensemble of different projections is required to achieve robust climate change information for a specific region. For this purpose we have compiled a state-of-the-art multi-model multi-scenario ensemble of global and regional precipitation projections. This ensemble combines several global projections from the CMIP3 and CMIP5 databases, along with some recently downscaled regional CORDEX-Africa projections. Altogether daily precipitation data from 77 different climate change projections is analysed; separated into 31 projections for a high and 46 for a low emission scenario. We find a robust indication that, independent of the underlying emission scenario, annual total precipitation amounts over the central African region are not likely to change severely in the future. However some robust changes in precipitation characteristics, like the intensification of heavy rainfall events as well as an increase in the number of dry spells during the rainy season are projected for the future. Further analysis shows that over some regions the results of the climate change assessment clearly depend on the size of the analyzed ensemble. This indicates the need of a “large-enough” ensemble of independent climate projections to allow for a reliable climate change assessment.  相似文献   
78.
Photodegradation of PAHs in the water-soluble fraction of Kuwait crude oil in seawater was investigated under various environmental factors (temperature, light intensity, oxygen levels and presence of a sensitizer) in laboratory conditions. All factors investigated had significant effect on the degradation rates of PAHs. At 15 °C almost all PAHs optimally degraded at an oxygen level of 4 ppm. For lower molecular weight PAHs a light intensity of 500 W/m2 in the presence of the sensitizer worked well. Higher molecular weight PAHs degraded at faster rates at a light intensity 750 W/m2. At 30 °C, most of the PAHs degraded optimally at an oxygen level of 0 ppm and light intensity of 500 or 750 W/m2 in presence of the sensitizer. At 40 °C, most of PAHs degraded optimally at low oxygen concentrations (0 and 4 ppm) and a light intensity of 500 W/m2 in the presence of the sensitizer. Linear regression indicated that for most of the compounds, light intensity had the greatest effect on degradation rates.  相似文献   
79.
Mass balance calculations and hydrodynamics of groundwater flow suggest that the solutes in brines of the coastal sabkha aquifer from the Emirate of Abu Dhabi are derived largely from ascending geologic brines into the sabkha from the underlying formations. Solute interpretation for the ascending brine model (ABM) was based on two independent but secondary lines of evidence (solute ratios and solute fluxes). In the current study, direct primary evidence for this ABM was provided through analyses of δ81Br, δ37Cl, and 87Sr/86Sr. Different solute histories of geologic brine and sea water provide an “isotopic fingerprint” that can uniquely distinguish between the two possible sources. Samples from the coastal sabkha aquifer of Abu Dhabi were determined to have a mean δ81Br of 1.17‰ that is statistically equal, at the 95% confidence level, to the mean of 1.11‰ observed in the underlying geologic brine and statistically different than sea water. Similarly, the δ37Cl in sabkha brine has a mean of 0.25‰ and is statistically equal to a mean of 0.21‰ in the underlying geologic brines at the 95% confidence level and statistically different from sea water. Also, dissolved strontium isotope data are consistent with the ABM and even with the complex set of processes in the sabkha, the variance in strontium isotope results is similar to the geologic brine. These observations provide primary direct evidence consistent that the major source of these solutes (and presumably others in the aquifer) is from discharging geologic brines, not from adjacent sea water.  相似文献   
80.
Multiyear (1983?C2006) hindcast simulation of summer monsoon over South Asia has been carried out using the regional climate model of the Beijing Climate Centre (BCC_RegCM1.0). The regional climate model (hereafter BCC RCM) is nested into the global climate model of the Beijing Climate Centre BCC_CGCM1.0 (here after CGCM). The regional climate model is initialized on 01 May and integrated up to the end of the September for 24?years. Compared to the driving CGCM the BCC RCM reproduces reasonably well the intensity and magnitude of the large-scale features associated with the South Asia summer monsoon such as the upper level anticyclone at 200?hPa, the mid-tropospheric warming over the Tibetan plateau, the surface heat low and the 850?hPa moisture transport from ocean to the land. Both models, i.e., BCC RCM and the driving CGCM overestimates (underestimates) the 850?hPa southwesterly flow over the northern (southern) Arabian Sea. Moreover, both models overestimate the seasonal mean precipitation over much of the South Asia region compared to the observations. However, the precipitation biases are significantly reduced in the BCC RCM simulations. Furthermore, both models simulate reasonably the interannual variability of the summer monsoon over India. The precipitation index simulated by BCC RCM shows significant correlation (0.62) with the observed one. The BCC RCM simulates reasonably well the spatial and temporal variation of the precipitation and surface air temperature compared to the driving CGCM. Further, the temperature biases are significantly reduced (1?C4°C) in the BCC RCM simulations. The simulated vertical structure of the atmosphere show biases above the four sub-regions, however, these biases are significantly reduced in the BCC RCM simulations compared to the driving CGCM. Compared to the driving CGCM, the evolution processes of the onset of summer monsoon, e.g., the meridional temperature gradient and the vertical wind shear are well simulated by the BCC RCM. The 24-year simulations also show that with a little exception the BCC RCM is capable to reproduce the monsoon active and break phases and the intraseasonal precipitation variation over the Indian subcontinent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号