首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   743篇
  免费   69篇
  国内免费   7篇
测绘学   24篇
大气科学   52篇
地球物理   151篇
地质学   309篇
海洋学   68篇
天文学   91篇
综合类   1篇
自然地理   123篇
  2024年   2篇
  2023年   4篇
  2022年   6篇
  2021年   22篇
  2020年   29篇
  2019年   24篇
  2018年   34篇
  2017年   47篇
  2016年   43篇
  2015年   34篇
  2014年   33篇
  2013年   43篇
  2012年   46篇
  2011年   53篇
  2010年   50篇
  2009年   82篇
  2008年   50篇
  2007年   45篇
  2006年   27篇
  2005年   15篇
  2004年   24篇
  2003年   29篇
  2002年   14篇
  2001年   11篇
  2000年   13篇
  1999年   2篇
  1998年   9篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有819条查询结果,搜索用时 15 毫秒
761.
The glacial isostatic adjustment (GIA) of the British Isles is complex due to the interplay between local and non‐local signals. A number of recent studies have modelled the GIA response of the British Isles using relative sea‐level data. This study extends these previous analyses by using output from a numerical glaciological model as input to a GIA model. This is a necessary step towards more realistic GIA models, and although there have been similar studies for the major late Pleistocene ice sheets, this is the first study to do so for the British Isles. We test three reconstructions, classed as ‘minimal’, ‘median’ and ‘maximal’ in terms of their volume at maximum extent, and find it is possible to obtain good data–model fits. The minimal reconstruction is clearly preferred by the sea‐level data. The ice reconstructions tested were not constrained by geomorphological information of past ice extent (lateral and vertical). As a consequence, the reconstructions extend further than much of this information suggests, particularly in terms of ice thickness. It is notable, however, that the reconstructions produce good fits to many sea‐level data from central, mountainous regions (e.g. Scottish highlands), which lends support to the suggestion that trimlines, often used as an constraint on the palaeo ice surface location, are in fact features formed at the transition from warm‐ to cold‐based ice and so mark a minimum constraint on the ice surface altitude. Based on data–model misfits, suggestions are made for improving the ice model reconstructions. However, in many locations, the cause of the misfit could be due to non‐local, predominantly Fennoscandian ice and so interpretation is not straightforward. As a result, we suggest that future analyses of this type consider models and observations for both Fennoscandia and the British Isles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
762.
Ice sheets and deep ice cores have yielded a wealth of paleoclimate information based on continuous dating methods while independent radiometric ages of ice have remained elusive. Here we demonstrate the application of (234U/238U) measurements to dating the EPICA Dome C ice core based on the accumulation of 234U in the ice matrix from recoil during 238U decay out of dust bound within the ice. Measured (234U/238U) activity ratios within the ice generally increase with depth while the surface areas of the dust grains are relatively constant. Using a newly designed device for measuring surface area for small samples, we were able to estimate reliably the recoil efficiency of nuclides from dust to ice. The resulting calculated radiometric ages range between 80 ka and 870 ka. Measured samples in the upper 3100 m fall on the previously published age-depth profile. Samples in the 3200–3255 m section show a marked change from 723–870 ka to 85 ka indicating homogenization of the deep ice prior to resetting of the (234U/238U) age in the basal layers. The mechanism for homogenization is likely enhanced lateral ice flow due to high basal melting and geothermal heat flux.  相似文献   
763.
The purpose of this study was to investigate, characterize and map areas of the seabed of Las Perlas Archipelago (LPA), Republic of Panama using swath-bathymetry acoustic sonar techniques and to assess these methods as tools for feeding information into management zoning policy. In 2007 the LPA was granted conservation protection under national legislation. However, detailed management plans are still pending. Seabed mapping plays a fundamental role in identifying areas which should be prioritized within the management framework. Visual representation of habitat maps provides an effective medium for involving stakeholders in a co-management arena. In this survey, acoustically mapped areas of the seabed were ground-truthed using a combination of benthic grab samples, drop-down video and diver observations. The resulting mapped areas were then incorporated into a Geographic Information System (GIS) for further analysis. The output was a physical characterization of the seabed at three locations selected for being areas of high rugosity (habitat complexity) and, therefore, their potential importance as valuable fish aggregation sites. The rocky reefs and rhodolith beds identified in this survey represent particularly important fish aggregation and nursery habitats which should be considered priorities for protection under the management plans. This survey demonstrated the use of acoustic techniques to spatially resolve topographic features and physical characteristics of the seabed, illustrating their potential value as tools for fisheries management and marine reserve zoning in Las Perlas Archipelago and elsewhere.  相似文献   
764.
Abstract— ‐Iron meteorites exhibit a large range in Ni concentrations, from only 4% to nearly 60%. Most previous experiments aimed at understanding the crystallization of iron meteorites have been conducted in systems with about 10% Ni or less. We performed solid metal/liquid metal experiments to determine the effect of Ni on partition coefficients for 20 trace elements pertinent to iron meteorites. Experiments were conducted in both the end‐member Ni‐S system as well as in the Fe‐Ni‐S system with intermediate Ni compositions applicable to high‐Ni iron meteorites. The Ni content of the system affects solid metal/liquid metal partitioning behavior. For a given S concentration, partition coefficients in the Ni‐S system can be over an order of magnitude larger than in the Fe‐S system. However, for compositions relevant to even the most Ni‐rich iron meteorites, the effect of Ni on partitioning behavior is minor, amounting to less than a factor of two for the majority of trace elements studied. Any effect of Ni also appears minor when it is compared to the large influence S has on element partitioning behavior. Thus, we conclude that in the presence of an evolving S‐bearing metallic melt, crystallization models can safely neglect effects from Ni when considering the full range of iron meteorite compositions.  相似文献   
765.
Climate models project warmer temperatures for the north‐west USA, which will result in reduced snowpacks and decreased summer streamflow. This paper examines how groundwater, snowmelt, and regional climate patterns control discharge at multiple time scales, using historical records from two watersheds with contrasting geological properties and drainage efficiencies. In the groundwater‐dominated watershed, aquifer storage and the associated slow summer recession are responsible for sustaining discharge even when the seasonal or annual water balance is negative, while in the runoff‐dominated watershed subsurface storage is exhausted every summer. There is a significant 1 year cross‐correlation between precipitation and discharge in the groundwater‐dominated watershed (r = 0·52), but climatic factors override geology in controlling the inter‐annual variability of streamflow. Warmer winters and earlier snowmelt over the past 60 years have shifted the hydrograph, resulting in summer recessions lasting 17 days longer, August discharges declining 15%, and autumn minimum discharges declining 11%. The slow recession of groundwater‐dominated streams makes them more sensitive than runoff‐dominated streams to changes in snowmelt amount and timing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
766.
The British Isles have been the focus of a number of recent modelling studies owing to the existence of a high‐quality sea‐level dataset for this region and the suitability of these data for constraining shallow earth viscosity structure, local to regional ice sheet histories and the magnitude/timing of global meltwater signals. Until recently, the paucity of both glaciological and relative sea‐level (RSL) data from Ireland has meant that the majority of these glacial isostatic adjustment (GIA) modelling studies of the British Isles region have tended to concentrate on reconstructing ice cover over Britain. However, the recent development of a sea‐level database for Ireland along with emergence of new glaciological data on the spatial extent, thickness and deglacial chronology of the Irish Ice Sheet means it is now possible to revisit this region of the British Isles. Here, we employ these new data to constrain the evolution of the Irish Ice Sheet. We find that in order to reconcile differences between model predictions and RSL evidence, a thick, spatially extensive ice sheet of ~600–700 m over much of north and central Ireland is required at the LGM with very rapid deglaciation after 21 k cal. yr BP. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
767.
Urban streams in the Northeastern United States have large road salt inputs during the winter, increased nonpoint sources of inorganic nitrogen and decreased short‐term and permanent storage of nutrients. Restoration activities that re‐establish connection between streams and riparian environments may be effective for improving urban stream water quality. Meadowbrook Creek, a first‐order stream in Syracuse, NY, provides a unique setting to explore impacts of stream–floodplain connection because it flows along a negative urbanization gradient, from channelized and armoured headwaters to a broad, vegetated floodplain with a riparian aquifer. In this study, we investigated how reconnection to groundwater and introduction of riparian vegetation impacted urban surface water chemistry by making biweekly longitudinal surveys of stream water chemistry in the creek from May 2012 until June 2013. We used multiple methods to measure groundwater discharge rates along the creek. Chloride concentrations in the upstream, disconnected reach were influenced by discharge of road salt during snow melt events and ranged from 161.2 to 1440 mg/l. Chloride concentrations in the downstream, connected reach had less temporal variation, ranging from 252.0 to 1049 mg/l, because of buffering by groundwater discharge, as groundwater chloride concentrations ranged from 84.0 to 655.4 mg/l. In the summer, there was little to no nitrate in the disconnected reach because of limited sources and high primary productivity, but concentrations reached over 1 mg N/l in the connected reach because of the presence of riparian vegetation. During the winter, when temperatures fell below freezing, nitrate concentrations in the disconnected reach increased to 0.58 mg N/l but were still lower than the connected reach, which averaged 0.88 mg N/l. Urban stream restoration projects that restore floodplain connection may impact water quality by storing high salinity road run‐off during winter overbank events and discharging that water year‐round, thereby attenuating seasonal fluctuations in chloride. Contrary to prior findings, we observed that floodplain connection and riparian vegetation may alter nitrate sources and sinks such that nitrate concentrations increase longitudinally in connected urban streams. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
768.
Floods are the most frequent natural disaster, causing more loss of life and property than any other in the USA. Floods also strongly influence the structure and function of watersheds, stream channels, and aquatic ecosystems. The Pacific Northwest is particularly vulnerable to climatically driven changes in flood frequency and magnitude, because snowpacks that strongly influence flood generation are near the freezing point and thus sensitive to small changes in temperature. To improve predictions of future flooding potential and inform strategies to adapt to these changes, we mapped the sensitivity of landscapes to changes in peak flows due to climate warming across Oregon and Washington. We first developed principal component‐based models for predicting peak flows across a range of recurrence intervals (2‐, 10‐, 25‐, 50‐, and 100‐years) based on historical instantaneous peak flow data from 1000 gauged watersheds in Oregon and Washington. Key predictors of peak flows included drainage area and principal component scores for climate, land cover, soil, and topographic metrics. We then used these regression models to predict future peak flows by perturbing the climate variables based on future climate projections (2020s, 2040s, and 2080s) for the A1B emission scenario. For each recurrence interval, peak flow sensitivities were computed as the ratio of future to current peak flow magnitudes. Our analysis suggests that temperature‐induced changes in snowpack dynamics will result in large (>30–40%) increases in peak flow magnitude in some areas, principally the Cascades, Olympics, and Blue Mountains and parts of the western edge of the Rocky Mountains. Flood generation processes in lower elevation areas are less likely to be affected, but some of these areas may be impacted by floodwaters from upstream. These results can assist land, water, and infrastructure managers in identifying watersheds and resources that are particularly vulnerable to increased peak flows and developing plans to increase their resilience. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
769.
Pro‐glacial landscapes are some of the most active on Earth. Previous studies of pro‐glacial landscape change have often been restricted to considering either sedimentological, geomorphological or topographic parameters in isolation and are often mono‐dimensional. This study utilized field surveys and digital elevation model (DEM) analyses to quantify planform, elevation and volumetric pro‐glacial landscape change at Sólheimajökull in southern Iceland for multiple time periods spanning from 1960 to 2010. As expected, the most intense geomorphological changes persistently occurred in the ice‐proximal area. During 1960 to 1996 the pro‐glacial river was relatively stable. However, after 2001 braiding intensity was higher, channel slope shallower and there was a shift from overall incision to aggradation. Attributing these pro‐glacial river channel changes to the 1999 jökulhlaup is ambiguous because it coincided with a switch from a period of glacier advance to that of glacier retreat. Furthermore, glacier retreat (of ~40 m yr?1) coincided with ice‐marginal lake development and these two factors have both altered the pro‐glacial river channel head elevation. From 2001 to 2010 progressive increase in channel braiding and progressive downstream incision occurred; these together probably reflecting stream power due to increased glacier ablation and reduced sediment supply due to trapping of sediment by the developing ice‐marginal lake. Overall, this study highlights rapid spatiotemporal pro‐glacial landscape reactions to changes in glacial meltwater runoff regimes, glacier terminus position, sediment supply and episodic events such as jökuhlaups. Recognizing the interplay of these controlling factors on pro‐glacial landscapes will be important for understanding the geological record and for landscape stability assessments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
770.
Anthropogenic climate change is expected to change the discharge and sediment transport regime of river systems. Because rivers adjust their channels to accommodate their typical inputs of water and sediment, changes in these variables can potentially alter river morphology. In this study, a hierarchical modeling approach was developed and applied to examine potential changes in reach‐averaged bedload transport and spatial patterns of erosion and deposition for three snowmelt‐dominated gravel‐bed rivers in the interior Pacific Northwest. The modeling hierarchy was based on discharge and suspended‐sediment load from a basin‐scale hydrologic model driven by a range of downscaled climate‐change scenarios. In the field, channel morphology and sediment grain‐size data for all three rivers were collected. Changes in reach‐averaged bedload transport were estimated using the Bedload Assessment of Gravel‐bedded Streams (BAGS) software, and the Cellular Automaton Evolutionary Slope and River (CAESAR) model was used to simulate the spatial pattern of erosion and deposition within each reach to infer potential changes in channel geometry and planform. The duration of critical discharge was found to control bedload transport. Changes in channel geometry were simulated for the two higher‐energy river reaches, but no significant morphological changes were found for a lower‐energy reach with steep, cohesive banks. Changes in sediment transport and river morphology resulting from climate change could affect the management of river systems for human and ecological uses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号