首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   3篇
  国内免费   3篇
测绘学   9篇
大气科学   23篇
地球物理   42篇
地质学   91篇
海洋学   8篇
天文学   20篇
自然地理   3篇
  2022年   6篇
  2021年   7篇
  2020年   4篇
  2019年   3篇
  2018年   16篇
  2017年   13篇
  2016年   9篇
  2015年   10篇
  2014年   11篇
  2013年   12篇
  2012年   9篇
  2011年   8篇
  2010年   6篇
  2009年   7篇
  2008年   5篇
  2007年   12篇
  2006年   6篇
  2005年   4篇
  2004年   7篇
  2003年   5篇
  2002年   1篇
  2001年   5篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1988年   1篇
  1985年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1972年   2篇
排序方式: 共有196条查询结果,搜索用时 31 毫秒
91.
Ambient concentrations of organic carbon (OC), elemental carbon (EC) and water soluble inorganic ionic components (WSIC) of PM10 were studied at Giridih, Jharkhand, a sub-urban site near the Indo Gangatic Plain (IGP) of India during two consecutive winter seasons (November 2011–February 2012 and November 2012–February 2013). The abundance of carbonaceous and water soluble inorganic species of PM10 was recorded at the study site of Giridih. During winter 2011–12, the average concentrations of PM10, OC, EC and WSIC were 180.2?±?46.4; 37.2?±?6.2; 15.2?±?5.4 and 18.0?±?5.1 μg m?3, respectively. Similar concentrations of PM10, OC, EC and WSIC were also recorded during winter 2012–13. In the present case, a positive linear trend is observed between OC and EC at sampling site of Giridih indicates the coal burning, as well as dispersed coal powder and vehicular emissions may be the source of carbonaceous aerosols. The principal components analysis (PCA) also identifies the contribution of coal burning? +?soil dust, vehicular emissions?+?biomass burning and seconday aerosol to PM10 mass concentration at the study site. Backward trajectoy and potential source contributing function (PSCF) analysis indicated that the aerosols being transported to Giridih from upwind IGP (Punjab, Haryana, Uttar Pradesh and Bihar) and surrounding region.  相似文献   
92.
93.
An isotopic and chemical study was conducted on precipitation, spring water, streams, groundwater wells and submarine groundwater discharge (SGD) to constrain the recharge areas and flow paths of SGD. The isotopic values of precipitation were used to determine the local meteoric water lines (LMWLs) of Rishiri Island. The d-excess values of precipitation showed seasonal variation, with lows of 2.5‰ in the summer and highs of 24.2‰ in the winter. The d-excess values of spring water, streams, groundwater wells and SGD ranged from 12.5‰ to 23.0‰, indicating that the resulting waters were a mix of two seasons of precipitation. The isotopic composition of the groundwater wells sampled along the coast and SGD showed more negative values than that of the spring water sampled along the coast. This indicated that SGD recharged at high altitudes and flowed into the sea. The isotopic and chemical composition of SGD indicated unidirectional flow from land to sea.  相似文献   
94.
Hazards associated with tropical cyclones are long-duration rotatory high-velocity winds, very heavy rain and storm tide. India has a coastline of about 7,516?km of which 5,400?km is along the mainland. The entire coast is affected by cyclones with varying frequency and intensity. The India Meteorological Department (IMD) is the nodal government agency that provides weather services related to cyclones in India. However, IMD has not identified cyclone-prone districts following any specific definition though the districts for which cyclone warnings are issued have been identified. On the other hand, for the purpose of better cyclone disaster management in the country, it is necessary to define cyclone proneness and identify cyclone-prone coastal districts. It is also necessary to decide degree of hazard proneness of a district by considering cyclone parameters so that mitigation measures are prioritised. In this context, an attempt has been made to prepare a list of cyclone hazard prone districts by adopting hazard criteria. Out of 96 districts under consideration, 12, 45, 31 and 08 districts are in very high, high, moderate and low categories of proneness, respectively. In general, the coastal districts of West Bengal, Orissa, Andhra Pradesh and Tamil Nadu are more prone and are in the high to very high category. The cyclone hazard proneness factor is very high for the districts of Nellore, East Godawari, and Krishna in Andhra Pradesh; Yanam in Puducherry; Balasore, Bhadrak, Kendrapara and Jagatsinghpur in Orissa; and South and North 24 Parganas, Medinipur and Kolkata in West Bengal. The results give a realistic picture of degree of cyclone hazard proneness of districts, as they represent the frequency and intensity of land falling cyclones along with all other hazards like rainfall, wind and storm surge. The categorisation of districts with degree of proneness also tallies with observed pictures. Therefore, this classification of coastal districts based on hazard may be considered for all the required purposes including coastal zone management and planning. However, the vulnerability of the place has not been taken into consideration. Therefore, composite cyclone risk of a district, which is the product of hazard and vulnerability, needs to be assessed separately through detailed study.  相似文献   
95.
Groundwater contaminated with arsenic (As), when extensively used for irrigation, causes potentially long-term detrimental effects to surface soils. Such contamination can also directly affect human health when irrigated crops, such as rice, vegetable and fruits, are used for human consumption. Therefore, an understanding of the leaching behavior of As in surface soils is of high importance, because such behavior may increase the bioavailability of As in the soil horizon. In this study, we have investigated the role of phosphate ions in leaching and bioavailability of As in the soil horizon, where drinking groundwater contains elevated levels of As (≥50 μg/L). Soil and groundwater samples were characterized in the laboratory and measured for physical and chemical constituents. The soils are generally neutral to slightly alkaline in character (pH range 7.5–8.1) with low to moderate levels of free Fe2O3, Al2O3, CaCO3, organic carbon, and clay content. The measured electrical conductivity (mean 599 μS/cm) of the soils demonstrates their non-saline nature. The Eh values (range −37 to −151 mV) of the groundwater indicate anoxic condition with low to moderate levels of bicarbonate (range 100–630 mg/L) and phosphate (range 0.002–4.0 mg/L). The arsenic content (range 50–690 μg/L; mean 321 μg/L) in groundwater has exceeded both WHO recommended guideline values (10 μg/L) and the National safe drinking water limit (50 μg/L). Regression analyses demonstrate that the bioavailability of As in the soil horizon is mainly controlled by the composition of free Fe2O3 and CaCO3 content of the soils. However, application of P could increase bioavailability of As in the soil horizon and become available to plants for uptake.  相似文献   
96.
It appears that there is a genuine shortage of radio pulsars with surface magnetic fields significantly smaller than ∼108 G. We propose that the pulsars with very low magnetic fields are actually strange stars locked in a state of minimum free energy and therefore at a limiting value of the magnetic field which cannot be lowered by the system spontaneously.  相似文献   
97.
Cylindrical Zakharov–Kuznestov equation for ion-acoustic waves comprising of ions and electrons featuring non-extensive distribution are derived from the fluid equations through reductive perturbation technique. System of first order ordinary differential equations is obtained from Zakharov–Kuznestov equation through dynamical system approach and ultimately it is solved using numerical method. It is found that the electron to positron ratio parameter and the non-extensive distributed parameter due to electron play crucial role on the solution.  相似文献   
98.
99.
The dependency of people on groundwater has increased in the past few decades due to tremendous increase in crop production, population and industrialization. Groundwater is the main source of irrigation in Shiwaliks of Punjab. In the present study the samples were collected from predetermined location as was located on satellite image on basis of spectral reflectance. Global positioning system was used to collect samples from specific locations. Principal components analysis (PCA) together with other factor analysis procedures consolidate a large number of observed variables into a smaller number of factors that can be more readily interpreted. In the present study, concentrations of different constituents were correlated based on underlying physical and chemical processes such as dissociation, ion exchange, weathering or carbonate equilibrium reactions. The PCA produced six significant components that explained 78% of the cumulative variance. The concentration of the few trace metals was found to be much higher indicating recharge due to precipitation as main transport mechanism of transport of heavy metals in groundwater which is also confirmed by PCA. Piper and other graphical methods were used to identify geochemical facies of groundwater samples and geochemical processes occurring in study area. The water in the study area has temporary hardness and is mainly of Ca–Mg–HCO3 type.  相似文献   
100.
Seismogenesis of aftershocks occurring in the Kachchh seismic zone for more than last 10?years is investigated through modeling of fractal dimensions, b-value, seismic velocities, stress inversion, and Coulomb failure stresses, using aftershock data of the 2001 Bhuj earthquake. Three-dimensional mapping of b-values, fractal dimensions, and seismic velocities clearly delineate an area of high b-, D-, and Vp/Vs ratio values at 15?C35?km depth below the main rupture zone (MRZ) of the 2001 mainshock, which is attributed to higher material heterogeneities in the vicinity of the MRZ or deep fluid enrichment due to the release of aqueous fluid/volatile CO2 from the eclogitisation of the olivine-rich lower crustal rocks. We notice that several aftershocks are occurred near the contacts between high (mafic brittle rocks) and low velocity regions while many of the aftershocks including the 2001 Bhuj mainshock are occurred in the zones of low velocity (low dVp, low dVs and large Vp/Vs) in the 15?C35?km depth range, which are inferred to be the fractured rock matrixes filled with aqueous fluid or volatiles containing CO2. Further support for this model comes from the presence of hydrous eclogitic layer at sub-lithospheric depths (34?C42?km). The depth-wise stress inversions using the P- and T-axes data of the focal mechanisms reveal an increase in heterogeneity (i.e., misfit) with an almost N?CS ??1 orientation up to 30?km depth. Then, the misfit decreases to a minimum value in the 30?C40?km depth range, where a 60o rotation in the ??1 orientation is also noticed that can be explained in terms of the fluid enrichment in that particular layer. The modeling of Coulomb failure stress changes (??CFS) considering three tectonic faults [i.e., NWF, GF, and Allah bund fault (ABF)] and the slip distribution of the 2001 mainshock on NWF could successfully explain the occurrences of moderate size events (during 2006?C2008) in terms of increase in positive ??CFS on GF and ABF. In a nutshell, we propose that the fluid-filled mafic intrusives are acting as stress accentuators below the Kachchh seismic zone, which generate crustal earthquakes while the uninterrupted occurrence of aftershocks is triggered by stress transfer and aqueous fluid or volatile CO2 flow mechanisms. Further, our results on the 3-D crustal seismic velocity structure, focal mechanisms, and b-value mapping will form key inputs for understanding wave propagation and earthquake hazard-related risk associated with the Kachchh basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号