首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   235篇
  免费   5篇
测绘学   3篇
大气科学   17篇
地球物理   52篇
地质学   33篇
海洋学   53篇
天文学   51篇
自然地理   31篇
  2024年   1篇
  2022年   2篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   8篇
  2015年   4篇
  2014年   4篇
  2013年   9篇
  2012年   5篇
  2011年   9篇
  2010年   5篇
  2009年   11篇
  2008年   7篇
  2007年   14篇
  2006年   14篇
  2005年   8篇
  2004年   8篇
  2003年   8篇
  2002年   12篇
  2001年   10篇
  2000年   8篇
  1999年   8篇
  1998年   10篇
  1997年   10篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   7篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   3篇
  1971年   1篇
排序方式: 共有240条查询结果,搜索用时 46 毫秒
11.
12.
This paper is concerned with numerical tests of several rock physical relationships. The focus is on effective velocities and scattering attenuation in 3D fractured media. We apply the so‐called rotated staggered finite‐difference grid (RSG) technique for numerical experiments. Using this modified grid, it is possible to simulate the propagation of elastic waves in a 3D medium containing cracks, pores or free surfaces without applying explicit boundary conditions and without averaging the elastic moduli. We simulate the propagation of plane waves through a set of randomly cracked 3D media. In these numerical experiments we vary the number and the distribution of cracks. The synthetic results are compared with several (most popular) theories predicting the effective elastic properties of fractured materials. We find that, for randomly distributed and randomly orientated non‐intersecting thin penny‐shaped dry cracks, the numerical simulations of P‐ and S‐wave velocities are in good agreement with the predictions of the self‐consistent approximation. We observe similar results for fluid‐filled cracks. The standard Gassmann equation cannot be applied to our 3D fractured media, although we have very low porosity in our models. This is explained by the absence of a connected porosity. There is only a slight difference in effective velocities between the cases of intersecting and non‐intersecting cracks. This can be clearly demonstrated up to a crack density that is close to the connectivity percolation threshold. For crack densities beyond this threshold, we observe that the differential effective‐medium (DEM) theory gives the best fit with numerical results for intersecting cracks. Additionally, it is shown that the scattering attenuation coefficient (of the mean field) predicted by the classical Hudson approach is in excellent agreement with our numerical results.  相似文献   
13.
The large, beautiful armadillo, Dasypus bellus, first appeared in North America about 2.5 million years ago, and was extinct across its southeastern US range by 11 thousand years ago (ka). Within the last 150 years, the much smaller nine‐banded armadillo, D. novemcinctus, has expanded rapidly out of Mexico and colonized much of the former range of the beautiful armadillo. The high degree of morphological similarity between these two species has led to speculation that they might be a single, highly adaptable species with phenotypical responses and geographical range fluctuations resulting from environmental changes. If this is correct, then the biology and tolerance limits for D. novemcinctus could be directly applied to the Pleistocene species, D. bellus. To investigate this, we isolated ancient mitochondrial DNA from late Pleistocene‐age specimens of Dasypus from Missouri and Florida. We identified two genetically distinct mitochondrial lineages, which most likely correspond to D. bellus (Missouri) and D. novemcinctus (Florida). Surprisingly, both lineages were isolated from large specimens that were identified previously as D. bellus. Our results suggest that D. novemcinctus, which is currently classified as an invasive species, was already present in central Florida around 10 ka, significantly earlier than previously believed.  相似文献   
14.
We test the feasibility of using Green's functions extracted from records of ambient seismic noise to monitor temporal changes in the Earth crust properties by repeated measurements at regional distances. We use about 11 yr of continuous recordings to extract surface waves between three pairs of stations in California. The correlations are computed in a moving 1-month window and we analyse the temporal evolution of measured interstation traveltimes. The comparison of the arrival times in the positive and negative correlation time of Rayleigh and Love waves allows us to separate time-shifts associated with any form of physical change in the medium, those resulting from clock drift or other instrumental errors, and those due to change in the localization of the noise sources. This separation is based on the principle of time symmetry. When possible, we perform our analysis in two different period bands: 5–10 and 10–20 s. The results indicate that significant instrumental time errors (0.5 s) are present in the data. These time-shifts can be measured and tested by closure relation and finally corrected independently of any velocity model. The traveltime series show a periodic oscillation that we interpret as the signature of the seasonal variation of the region of origin of the seismic noise. Between 1999 and 2005, the final arrival time fluctuations have a variance of the order of 0.01 s. This allows us to measure interstation traveltimes with errors smaller than 0.3 per cent of the interstation traveltime and smaller than 1 per cent of the used wave period. This level of accuracy was not sufficient to detect clear physical variation of crustal velocity during the considered 11 yr between the three stations in California. Such changes may be more easily detectable when considering pairs of stations more closely located to each other and in the vicinity of tectonically active faults or volcanoes.  相似文献   
15.
16.
The mineral composition of sandstones from Cretaceous–Lower Paleocene terrigenous sequences of the western Kamchatka–Ukelayat zone (southern Koryak Upland, western Kamchatka) suggests that the Okhotsk–Chukot volcanogenic belt and fragments of the Uda–Murgal island arc served as the most probable provenance. Fission-track dating of zircon showed that sandstones from this zone contain detrital zircon of several different-age populations. Fission tracks in zircon grains were nor subjected to secondary ignition. The age of young zircon population coincides with the biostratigraphic age of host sequences. Thus, results of dating of detrital zircon grains from sandstones, which did not experience heating above 215–240°C, indicate that this method is appropriate for dating fossil-free terrigenous sequences. The young zircon population in the sandstones is related to erosion of plagiogranite and diorite intrusions of the Uda–Murgal arc and outer zone of the Okhotsk–Chukot volcanic belt exposed at the day surface owing to differential vertical movements and rapid exhumation of blocks.  相似文献   
17.
Differential very-long-baseline interferometric observations of signals from Apollo Lunar Surface Experiment Package telemetry transmitters will yield the relative projected positions of the transmitters with uncertainty of only 1-3 m, set mainly by uncertainty of the lunar ephemeris. Noise and systematic instrumental errors which in the past affected similar observations have been reduced to the equivalent of a few centimeters on the lunar surface by the development of a new type of differential receiver. Continued observations should yield a determination of the motion of the Moon about its center of mass with uncertainty less than 1 s of selenocentric arc. Improvements (by other means) in our knowledge of the Moon's orbital motion would allow a further order-of-magnitude refinement in the libration and relative position results obtainable by differential VLBI.Communication presented at the conference on Lunar Dynamics and Observational Coordinate Systems held January 15–17, 1973 at the Lunar Science Institute, Houston, Tex. U.S.A.  相似文献   
18.
We report Doppler-only (cw) radar observations of basaltic near-Earth asteroid 3908 Nyx obtained at Arecibo and Goldstone in September and October of 1988. The circular polarization ratio of 0.75±0.03 exceeds ∼90% of those reported among radar-detected near-Earth asteroids and it implies an extremely rough near-surface at centimeter-to-decimeter spatial scales. Echo power spectra over narrow longitudinal intervals show a central dip indicative of at least one significant concavity. Inversion of cw spectra yields two statistically indistinguishable shape models that have similar shapes and dimensions but pole directions that differ by ∼100°. We adopt one as our working model and explore its implications. It has an effective diameter of 1.0±0.15 km and radar and visual geometric albedos of 0.15±0.075 and 0.16+0.08−0.05. The visual albedo supports the interpretation by D. P. Cruikshank et al. (1991, Icarus89, 1-13) that Nyx has a thermal inertia consistent with that of bare rock. The model is irregular, modestly asymmetric, and topographically rugged.  相似文献   
19.
The analysis of spectral lag between energy bands, which combines temporal and spectral analyses, can add strict constraints to gamma-ray burst (GRB) models. In previous studies, the lag analysis focused on the lags between channel 1 (25-57 keV) and channel 3 (115-320 keV) from the Burst and Transient Source Experiment (BATSE). In this Letter, we analyzed the cross-correlation average lags (including approximate uncertainties) between energy bands for two GRB samples: 19 events detected by Ginga and 109 events detected by BATSE. We paid special attention to the BATSE GRBs with known redshifts because there has been a reported connection between lag and luminosity. This extends our knowledge of spectral lags to lower energy ( approximately 2 keV). We found that lags between energy bands are small. The lag between the peak of approximately 50 keV photons and that of approximately 200 keV photons is approximately 0.08 s. The upper limit in the lag between approximately 9 and approximately 90 keV photons is approximately 0.5 s. Thus, there are not large shifts at low energy. We found that about 20% of GRBs have detectable lags between energy bands in the Ginga and BATSE samples. From the internal shock model, we found that there are three sources of time structure in GRB pulses: cooling, hydrodynamics, and angular effects. We argue that cooling is much too fast to account for our observed lags and that angular effects are independent of energy. Thus, only hydrodynamics can produce these lags. Perhaps the radiation process varies as the reverse shock moves through the shell.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号