首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   7篇
  国内免费   1篇
测绘学   1篇
大气科学   2篇
地球物理   26篇
地质学   22篇
海洋学   13篇
天文学   10篇
自然地理   3篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   3篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  2002年   6篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1996年   5篇
  1995年   1篇
  1993年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1978年   1篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有77条查询结果,搜索用时 31 毫秒
21.
A new set of multi-channel sea surface temperature (MCSST) equations for the Advanced Very High Resolution Radiometer (AVHRR) on NOAA-9 is derived from regression analyses between two-channel brightness temperatures andin situ SST obtained from moored buoys around Japan. Two equations are derived: one for daytime and the other for nighttime. They are linear split window type and both the equations contain a term dependent on satellite zenith angle, which has not been accounted for in the previous daytime split window equations for NOAA-9. It is shown that the new set of equation can give SSTs in much better precision than those without the zenith-angle-dependent terms. It is also found that the split window equation for NOAA-9 provided by the National Oceanographic and Atmospheric Administration/National Environmental Satellite, Data and Information Service (NOAA/NESDIS) considerably underestimates the daytime SSTs; sometimes nighttime SSTs are evenhigher than daytime SSTs. This is because the zenith angle effect to the radiation deficiet is neglected in the daytime equation by NOAA/NESDIS. By using the new MCSST equations, it is expected that the quality of satellite MCSST would be much improved, at least in regional applications around Japan, for the period of NOAA-9's operation.  相似文献   
22.
We investigate the total kinetic powers (L j) and ages (t age) of powerful jets of four FR II radio sources (Cygnus A, 3C 223, 3C 284, and 3C 219) by the detail comparison of the dynamical model of expanding cocoons with observed ones. It is found that these sources have quite large kinetic powers with the ratio of L j to the Eddington luminosity (L Edd) resides in 0.02<L j/L Edd<10. Reflecting the large kinetic powers, we also find that the total energy stored in the cocoon (E c) exceed the energy derived from the minimum energy condition (E min ): 2<E c/E min <160. This implies that a large amount of kinetic power is carried by invisible components such as thermal leptons (electron and positron) and/or protons.  相似文献   
23.
Ground-based optical observations of D1 and D2 line emissions from Jupiter’s sodium nebula, which extend over several hundreds of jovian radii, were carried out at Mt. Haleakala, Maui, Hawaii using a wide field filter imager from May 19 to June 21, 2007. During this observation, the east-west asymmetry of the nebula with respect to the Io’s orbital motion was clearly identified. Particularly, the D1+D2 brightness on the western side of Jupiter is strongly controlled by the Io phase angle. The following scenario was developed to explain this phenomenon as follows: First, more ionospheric ions like NaX+, which are thought to produce fast neutral sodium atoms due to a dissociative recombination process, are expected to exist in Io’s dayside hemisphere rather than in the nightside one. Second, it is expected that more NaX+ ionospheric ions are picked up by the jovian co-rotating magnetic field when Io’s leading hemisphere is illuminated by the Sun. Third, the sodium atom ejection rate varies with respect to Io’s orbital position as a result of the first two points. Model simulations were performed using this scenario. The model results were consistent with the observation results, suggesting that Io’s ionosphere is expected to be controlled by solar radiation just like Earth.  相似文献   
24.
Resonant scattering of the lunar sodium exosphere was measured from the lunar orbiter SELENE (Kaguya) from December 2008 to June 2009. Variations in line-of-sight integrated intensity measured on the night-side hemisphere of the Moon could be described as a spherical symmetric distribution of the sodium exosphere with a temperature of 2400-6000 K. Average surface density of sodium atoms in February is well above that in the other months by about 30%. A clear variation in surface density related to the Moon’s passage across the Earth’s magnetotail could not be seen, although sodium density gradually decreased (by 20±8%) during periods from the first through the last quarter of two lunar cycles. These results suggest that the supra-thermal components of the sodium exosphere are not mainly produced by classical sputtering of solar wind. The variation in sodium density (which depends on lunar-phase angle) is possibly explained by the presence of an inhomogeneous source distribution of photon-stimulated desorption (PSD) on the surface.  相似文献   
25.
—?In order to clarify the effects of contact geometry of faults on transmission waves, we have performed a series of experiments in which P and S waves with known wavelength were transmitted through an artificial fault. A pair of piezo-electric transducers (PZT) with various resonant frequency were used for the transmitter and the receiver. Parallel grooves were cut on disk surfaces and two disks were placed face to face with the grooves on one disk being perpendicular to those on the other disk. This yields evenly spaced square contacts on the fault. We regard the square contacts as asperity contacts, the size and the height of which were controlled by changing the width and the depth of the grooves. We found that the transmissivity of the waves is solely determined by the ratio of the groove depth/width to wavelength. The shallower and the narrower the groove depth and width are, the larger the amplitude of first arrival is for both P and S waves. When the groove depth is shallower than a quarter of wavelength, the effect of groove depth is negligible; deeper grooves significantly reduce the amplitude. We have made a mathematical model based on the stiffness of fault. By comparing the model calculations with the observation we found that the model has a limit at which the prediction by the model deviates from the data. The deviation occurs when the ratio of the groove depth/width to wavelength becomes 0.25. We refer to the wavelength as the critical wavelength. When the wavelength is larger than the critical wavelength, the observed data can be well explained by the model. Above this threshold, the model no longer fits the data. In this range, the amplitude of transmitted waves is found to be proportional to the real contact area. Although it is a kind of paradox that the amplitude, not the energy, is proportional to the real contact area, it is possibly explained by taking a non-uniform distribution of stress on the surface of the receiver PZT into account.  相似文献   
26.
Recent seismic tomography has revealed various morphologies in the subducted lithosphere. In particular, significant flattening and stagnation of slabs around the 660-km boundary are seen in some areas beneath the northwestern Pacific subduction zones. We examined the cause of slab stagnation in terms of the Clapeyron slope of the phase transformation from ringwoodite to perovskite + magnesiowüstite, trench retreat velocity, dip angles, and high viscosity of the lower mantle based on two-dimensional (2-D) numerical simulations of thermal convection. In particular, we examined the conditions necessary for slab stagnation assuming a very small absolute value of the Clapeyron slope, which were proposed based on recent high-pressure, high-temperature (high PT) experiments. Our calculations show that slabs tend to stagnate above the 660-km boundary with an increasing absolute value of the Clapeyron slope, viscosity jump at the boundary, and trench retreat velocity and a decreasing initial dip angle. Stagnant slabs could be obtained numerically for a realistic range of parameters obtained from high PT experiments and other geophysical observations combining buoyancy, high lower-mantle viscosity, and trench retreat. We found that a low dip angle of a descending slab at the bottom of the upper mantle plays an important role in slab stagnation. Two main regimes underlie slab stagnation: buoyancy-dominated and viscosity-dominated regimes. In the viscosity-dominated regime, it is possible for slabs to stagnate above the 660-km boundary, even when the value of the Clapeyron slope is 0 MPa/K.  相似文献   
27.
Over 300 samples for paleomagnetic analysis and K–Ar dating were collected from 27 sites at NW–SE and NE–SW trending dike swarms (herein, NW dikes and NE dikes, respectively) in the Koshikijima Islands, northern Ryukyu Arc. The NW dikes are Middle Miocene in age and have directions (D = ? 37.7°, I = 51.8°, α95 = 9.6°, and κ = 40.8) that are deflected westward relative to the stable eastern Asian continent. Conversely, the NE dikes, of Late Miocene age, have directions (D = 16.1°, I = 57.7°, α95 = 7.1°, and κ = 41.9) that show no such deflection. These differences are interpreted as indicating that the Koshikijima Islands underwent approximately 40° of counter-clockwise rotation during the Middle to Late Miocene. A synthesis of the paleomagnetic and structural data suggests a three-stage history of extensional deformation: (1) displacement upon normal faults (F1 faults) without vertical-axis block rotation, (2) strike-slip reactivation of F1 faults and oblique-normal displacement on NE–SW-trending faults (F2 faults) with vertical-axis block rotation, and (3) oblique-normal displacement on F2 faults without vertical-axis block rotation. Regional differences in the timing and amount of counter-clockwise vertical-axis block rotations indicate that the northern Ryukyu Arc rotated as several distinct rigid blocks.  相似文献   
28.
CM chondrites are a group of primitive meteorites that have recorded the alteration history of the early solar system. We report the occurrence, chemistry, and oxygen isotopic compositions of P‐O‐rich sulfide phase in two CM chondrites (Grove Mountains [GRV] 021536 and Murchison). This P‐O‐rich sulfide is a polycrystalline aggregate of nanometer‐size grains. It occurs as isolated particles or aggregates in both CM chondrites. These grains, in the matrix and in type‐I chondrules from Murchison, were partially altered into tochilinite; however, grains enclosed by Ca‐carbonate are much less altered. This P‐O‐rich sulfide in Murchison is closely associated with magnetite, FeNi phosphide, brezinaite (Cr3S4), and eskolaite (Cr2O3). In addition to sulfur as the major component, this sulfide contains ~6.3 wt% O, ~5.4 wt% P, and minor amounts of hydrogen. Analyses of oxygen isotopes by SIMS resulted in an average δ18O value of ?22.5 ‰ and an average Δ17O value of 0.2 ± 9.2 ‰ (2σ). Limited variations in both chemical compositions and electron‐diffraction patterns imply that the P‐O‐rich sulfide may be a single phase rather than a polyphase mixture. Several features indicate that this P‐O‐rich sulfide phase formed at low temperature on the parent body, most likely through the alteration of FeNi metal (a) close association with other low‐temperature alteration products, (b) the presence of hydrogen, (c) high Δ17O values and the presence in altered mesostasis of type‐I chondrules and absence in type‐II chondrules. The textural relations of the P‐O‐rich sulfide and other low‐temperature minerals reveal at least three episodic‐alteration events on the parent body of CM chondrites (1) formation of P‐O‐rich sulfide during sulfur‐rich aqueous alteration of P‐rich FeNi metal, (2) formation of Ca‐carbonate during local carbonation, and (3) alteration of P‐O‐rich sulfide and formation of tochilinite during a period of late‐stage intensive aqueous alteration.  相似文献   
29.
Crustal deformation by the M w 9.0 megathrust Tohoku earthquake causes the extension over a wide region of the Japanese mainland. In addition, a triggered M w 5.9 East Shizuoka earthquake on March 15 occurred beneath the south flank, just above the magma system of Mount Fuji. To access whether these earthquakes might trigger the eruption, we calculated the stress and pressure changes below Mount Fuji. Among the three plausible mechanisms of earthquake–volcano interactions, we calculate the static stress change around volcano using finite element method, based on the seismic fault models of Tohoku and East Shizuoka earthquakes. Both Japanese mainland and Mount Fuji region are modeled by seismic tomography result, and the topographic effect is also included. The differential stress given to Mount Fuji magma reservoir, which is assumed to be located to be in the hypocentral area of deep long period earthquakes at the depth of 15 km, is estimated to be the order of about 0.001–0.01 and 0.1–1 MPa at the boundary region between magma reservoir and surrounding medium. This pressure change is about 0.2 % of the lithostatic pressure (367.5 MPa at 15 km depth), but is enough to trigger an eruptions in case the magma is ready to erupt. For Mount Fuji, there is no evidence so far that these earthquakes and crustal deformations did reactivate the volcano, considering the seismicity of deep long period earthquakes.  相似文献   
30.
An application of a pin‐supported wall‐frame system in retrofitting an eleven‐story steel reinforced concrete frame is introduced. The retrofit aims at enhancing integrity and avoiding weak story failure in an existing moment‐resisting frame. Seismic performance of the building before and after the retrofit is assessed through nonlinear dynamic analysis. The results show that the pin‐supported walls are effective in controlling the deformation pattern of the ductile frame and hence in avoiding weak story failure. With the well‐controlled deformation pattern, carefully arranged energy dissipating devices are able to concentrate energy dissipations so that damage to the rest of the structure can be significantly reduced. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号