首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   9篇
测绘学   1篇
大气科学   5篇
地球物理   19篇
地质学   33篇
海洋学   4篇
天文学   1篇
自然地理   1篇
  2024年   1篇
  2022年   5篇
  2021年   3篇
  2020年   8篇
  2019年   7篇
  2018年   5篇
  2017年   8篇
  2016年   4篇
  2015年   4篇
  2014年   5篇
  2013年   7篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
21.
This paper is devoted to investigate the effects of near‐fault ground motions on the seismic responses of nonlinear MDOF structures considering soil‐structure interaction (SSI). Attempts are made to take into account the effects of different frequency‐content components of near‐fault records including pulse‐type (PT) and high‐frequency (HF) components via adopting an ensemble of 54 near‐fault ground motions. A deep sensitivity analysis is implemented based on the main parameters of the soil‐structure system. The soil is simulated based on the Cone model concept, and the superstructure is idealized as a nonlinear shear building. The results elucidate that SSI has approximately increasing and mitigating effects on structural responses to the PT and HF components, respectively. Also, a threshold period exists above which the HF component governs the structural responses. As the fundamental period of the structure becomes shorter and structural target ductility reduces, the contribution of the HF component to the structural responses increases, elaborately. Soil flexibility makes the threshold period increase, and the effect of the PT component becomes more significant than the HF one. In the case of soil‐structure system, slenderizing the structure also increases this threshold period and causes the PT component to be dominant. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
22.
ABSTRACT

Mechanically stabilized earth (MSE) walls must be designed with adequate margins of safety against internal stability failure described by tensile strength and pullout limit states. Probabilities of failure (or reliability index) will vary strongly with the accuracy of the underlying models that appear in limit state performance functions. In this paper, prior work by the authors and co-workers on this topic is reviewed. Relative performance is explored in the context of the reliability (or probability of failure) of steel and polymeric reinforcing elements in MSE walls using limit state performance functions with load and resistance models having different accuracy.  相似文献   
23.
Axially loaded members might experience compressive forces above their static buckling capacity because of dynamic buckling under rapid shortening. Although the subject is studied in the context of engineering mechanics, it has not been thoroughly investigated in the field of earthquake engineering. Such dynamic overshoots in the compressive capacity can also be observed for braces of concentrically braced frames (CBFs) during earthquakes. Consequently, a comprehensive investigation is conducted in this study regarding the effects of dynamic buckling of braces on the seismic behavior of steel CBFs. After providing a theoretical background, recent dynamic experiments on braces and CBFs are simulated and discussed to investigate the occurrence of dynamic overshoot during these tests. Eight archetype CBFs are then designed, modeled, and subjected to a large set of ground motions to provide a quantified insight on the frequency and anticipated level of dynamic overshoot in the compressive capacity of braces during earthquakes. Results of a total of 1600 nonlinear time history analyses revealed that dynamic overshoots occur frequently in braces and affect the behavior of CBFs notably. Considerable increases are recorded in forces transmitted to other members of CBFs as a consequence of such dynamic overshoots. Importance of incorporating these dynamic overshoots in the capacity design procedure of columns, beams, and gusset plates is highlighted. Furthermore, results of a parametric study are presented and summarized in the form of a simple formula that can be used as a guide for estimating the level of dynamic overshoot.  相似文献   
24.
Urban green spaces (UGS), like most managed land covers, are getting progressively affected by water scarcity and drought. Preserving, restoring and expanding UGS require sustainable management of green and blue water resources to fulfil evapotranspiration (ET) demand for green plant cover. The heterogeneity of UGS with high variation in their microclimates and irrigation practices builds up the complexity of ET estimation. In oversized UGS, areas too large to be measured with in situ ET methods, remote sensing (RS) approaches of ET measurement have the potential to estimate the actual ET. Often in situ approaches are not feasible or too expensive. We studied the effects of spatial resolution using different satellite images, with high-, medium- and coarse-spatial resolutions, on the greenness and ET of UGS using Vegetation Indices (VIs) and VI-based ET, over a 780-ha urban park in Adelaide, Australia. We validated ET with the ground-based ET method of Soil Water Balance. Three sets of imagery from WorldView2, Landsat and MODIS, and three VIs including the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Enhanced Vegetation Index 2 (EVI2), were used to assess long-term changes of VIs and ET calculated from the different imagery acquired for this study (2011–2018). We found high correspondence between ET-MODIS and ET-Landsat (R2 > 0.99 for all VIs). Landsat-VIs captured the seasonal changes of greenness better than MODIS-VIs. We used artificial neural network (ANN) to relate the RS-ET and ground data, and ET-MODIS (EVI2) showed the highest correlation (R2 = 0.95 and MSE =0.01 for validation). We found a strong relationship between RS-ET and in situ measurements, even though it was not explicable by simple regressions; black box models helped us to explore their correlation. The methodology used in this research makes a strong case for the value of remote sensing in estimating and managing ET of green spaces in water-limited cities.  相似文献   
25.
ABSTRACT

Evidential reasoning (ER) is introduced as a new basis for developing and implementing sustainability indices (SI). The ER-based evaluations keep the merits of previous well-known sustainability indices and provide added values such as more accurate grade-based assessment and aggregation of performance criteria. The proposed modifications significantly improve the capability of the SI to scrutinize and differentiate various water-supply conditions. Available data from Gorganrud-Qaresou basin, northern Iran, are used to evaluate the applicability and efficiency of the sustainability index. The results of the proposed method are compared with two water resources sustainability indices with similar concepts but different bases. It is shown that the ER-based SI can better distinguish undesirable water-supply scenarios.  相似文献   
26.
Peat commonly occurs as extremely soft, wet, unconsolidated surface deposits that are integral parts of wetland systems. Cement is widely used for the stabilization of peat by deep mixing method. This paper presents the results of the shear strength parameters of study models (fibrous, hemic and sapric peats stabilized with columns formed by dry mixing method). The columns were formed of peat treated with cement in different proportions. Triaxial test was performed after curing the samples for 28?days to evaluate the shear strength parameters. The results showed that the shear strength of peats can be improved significantly by the installation of cement stabilized soil columns. The amount of cement used to form the column and its diameter were observed to influence the strain–stress graph of peat reinforced. Furthermore, the result showed that the effect of cement was the highest on sapric peat due to its physico-chemical properties.  相似文献   
27.
Peat is known as soft soil with low shear strength and high compressibility. Electrokinetic injection technique is being used by applying a direct electrical potential across the soil specimens to improve physicochemical characteristics of the peat. Such applications cause electrochemical effects on the soil, leading to changes in the soil’s chemical, physical, and mechanical properties. This paper presents the results of the undrained shear strength, pH, water content across the electrokinetic box after injecting the cationic grouts. Four cationic grouts namely; calcium chloride, calcium oxide, Aluminum hydroxide, and sodium silicates were selected as grout. The microstructures of the stabilized peats were investigated by scanning electron microscopy and energy dispersive X-ray spectrometer analysis. The result showed that the cationic stabilizer injected by the electrokinetic technique could significantly increase the peat soil’s shear strength. Furthermore, the result showed that the effect of calcium oxide was the highest on the shear strength of peat due to its physico-chemical properties. The shear strength, pH and moisture content of peats across the electrokinetic box also altered depending on the used electrolytes and time.  相似文献   
28.
Long-period pulses in near-field earthquakes lead to large displacements in the base of isolated structures.To dissipate energy in isolated structures using semi-active control,piezoelectric friction dampers(PFD) can be employed.The performance of a PFD is highly dependent on the strategy applied to adjust its contact force.In this paper,the seismic control of a benchmark isolated building equipped with PFD using PD/PID controllers is developed.Using genetic algorithms,these controllers are optimized to create a balance between the performance and robustness of the closed-loop structural system.One advantage of this technique is that the controller forces can easily be estimated.In addition,the structure is equipped with only a single sensor at the base floor to measure the base displacement.Considering seven pairs of earthquakes and nine performance indices,the performance of the closed-loop system is evaluated.Then,the results are compared with those given by two well-known methods:the maximum possive operation of piezoelectric friction dampers and LQG controllers.The simulation results show that the proposed controllers perform better than the others in terms of simultaneous reduction of floor acceleration and maximum displacement of the isolator.Moreover,they are able to reduce the displacement of the isolator systems for different earthquakes without losing the advantages of isolation.  相似文献   
29.
Providing safety in roads for the purpose of protecting human assets and preventing social and economic losses resulted from road accidents is a significant issue. Identifying the traffic hot spots of the roads provides the possibility of promoting the road safety which is also related to investigate frequency and intensity of occurred accidents. Accidents are multidimensional and complicated events. Identifying the accident factors is based on applying a comprehensive and integrated system for making decisions. Therefore, applying common mathematical and statistical methods in this field can be resulted in some problems. Hence, the new research methods with abilities to infer meaning from complicated and ambiguous data seem useful. Therefore, along with identifying the traffic hot spots, adaptive Neuro-Fuzzy inference system is used to predict traffic hot spots on rural roads. In this process, a fuzzy inference system from Sugeno type is trained applying hybrid optimization routine (back propagation algorithm in combination with a least square type of method) and accident data of Karaj-Chalus road in Tehran Province. Then the system was tested by a complete set of data. Finally, the stated system could predict 96.85 % of accident frequencies in the studied blocks. Furthermore, the amount of effective false negative in all cases included only 0.82 % of predictions, which indicated a good approximation of predictions and model credibility.  相似文献   
30.
Uncertainty in the predicted ultimate pullout strength of soil nails can be significant due to the complexity of nail–soil interactions, inherent variability in soil properties and the effects of nail installation. The paper first presents a statistical evaluation of the accuracy of ultimate bond strength of soil nails using the effective stress method (ESM) equation that has been adopted in Hong Kong. A total of 113 ultimate nail capacity data points from field pullout tests were collected from the literature and used to estimate the accuracy of the current ESM. Based on the available data, the current ESM default pullout model is found to be excessively conservative (on average) by at least a factor of three. The spread in prediction accuracy measured by the coefficient of variation (COV) of bias is in the range of 36–43 % after removing anomalous test data. Here, bias is the ratio of measured to predicted pullout load capacity. In addition, the accuracy of the current ESM equation for prediction of nail bond strength is shown to be dependent on the magnitude of predicted ultimate bond strength and magnitude of nominal vertical effective stress which is undesirable. The paper examines four candidate-modified bond strength equations with empirical coefficients that have been back-fitted to measured bond strengths to improve the overall accuracy of the equation and to reduce or remove the undesirable dependencies noted above. One equation with an empirically corrected stress-dependent term is judged to be the best candidate model based on the mean of bias values, spread (COV) of bias values, lack of dependencies and simplicity. Finally, the relative contributions of random variability in soil shear strength to measurement bias in bond strength (prediction accuracy) for each soil type are computed for the best bond strength model. Analysis of the contribution of soil shear strength to prediction accuracy showed that the combination of variability due to factors other than soil shear strength was greater than the variability in soil shear strength alone, where the latter is defined by the soil secant friction coefficient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号