首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   18篇
  国内免费   7篇
测绘学   25篇
大气科学   19篇
地球物理   55篇
地质学   83篇
海洋学   3篇
天文学   28篇
自然地理   26篇
  2023年   1篇
  2021年   1篇
  2020年   4篇
  2019年   8篇
  2018年   8篇
  2017年   13篇
  2016年   11篇
  2015年   10篇
  2014年   18篇
  2013年   17篇
  2012年   9篇
  2011年   11篇
  2010年   14篇
  2009年   22篇
  2008年   14篇
  2007年   13篇
  2006年   16篇
  2005年   10篇
  2004年   6篇
  2003年   4篇
  2002年   3篇
  2001年   8篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有239条查询结果,搜索用时 328 毫秒
11.
We present for the first time a self-consistent methodology connecting volcanological field data to global climate model estimates for a regional time series of explosive volcanic events. Using the petrologic method, we estimated SO2 emissions from 36 detected Plinian volcanic eruptions occurring at the Central American Volcanic Arc (CAVA) during the past 200,000 years. Together with simple parametrized relationships collected from past studies, we derive estimates of global maximum volcanic aerosol optical depth (AOD) and radiative forcing (RF) describing the effect of each eruption on radiation reaching the Earth’s surface. In parallel, AOD and RF time series for selected CAVA eruptions are simulated with the global aerosol model MAECHAM5-HAM, which shows a relationship between stratospheric SO2 injection and maximum global mean AOD that is linear for smaller volcanic eruptions (<5 Mt SO2) and nonlinear for larger ones (≥5 Mt SO2) and is qualitatively and quantitatively consistent with the relationship used in the simple parametrized approximation. Potential climate impacts of the selected CAVA eruptions are estimated using an earth system model of intermediate complexity by RF time series derived by (1) directly from the global aerosol model and (2) from the simple parametrized approximation assuming a 12-month exponential decay of global AOD. We find that while the maximum AOD and RF values are consistent between the two methods, their temporal evolutions are significantly different. As a result, simulated global maximum temperature anomalies and the duration of the temperature response depend on which RF time series is used, varying between 2 and 3 K and 60 and 90 years for the largest eruption of the CAVA dataset. Comparing the recurrence time of eruptions, based on the CAVA dataset, with the duration of climate impacts, based on the model results, we conclude that cumulative impacts due to successive eruptions are unlikely. The methodology and results presented here can be used to calculate approximate volcanic forcings and potential climate impacts from sulfur emissions, sulfate aerosol or AOD data for any eruption that injects sulfur into the tropical stratosphere.  相似文献   
12.
13.
14.
GNSS satellite transmit power and its impact on orbit determination   总被引:1,自引:0,他引:1  
Antenna thrust is a small acceleration acting on Global Navigation Satellite System satellites caused by the transmission of radio navigation signals. Knowledge about the transmit power and the mass of the satellites is required for the computation of this effect. The actual transmit power can be obtained from measurements with a high-gain antenna and knowledge about the properties of the transmit and receive antennas as well as losses along the propagation path. Transmit power measurements for different types of GPS, GLONASS, Galileo, and BeiDou-2 satellites were taken with a 30-m dish antenna of the German Aerospace Center (DLR) located at its ground station in Weilheim. For GPS, total L-band transmit power levels of 50–240 W were obtained, 20–135 W for GLONASS, 95–265 W for Galileo, and 130–185 W for BeiDou-2. The transmit power differs usually only slightly for individual spacecraft within one satellite block. An exception are the GLONASS-M satellites where six subgroups with different transmit power levels could be identified. Considering the antenna thrust in precise orbit determination of GNSS satellites decreases the orbital radius by 1–27 mm depending on the transmit power, the satellite mass, and the orbital period.  相似文献   
15.
<正>The central and northwestern Tibetan Plateau region,also called"Qiangtang Plateau"(30°27'25"-35°39'13"N,83o41'14"-95°10'46"E),is the highest and largest arcticalpine area of the Earth covering approximately 600,000km~2 with altitude ranging from 4600 to 5100 m a.s.l.(Song et al.,2012,Fig.1).Ostracod species of  相似文献   
16.
Abstract

Synthetic Aperture Radar (SAR) data has become an important tool for studies of polar regions, due to high spatial resolution even during the polar night and under cloudy skies. We have studied the temporal variation of sea and land ice backscatter of twenty‐four SAR images from the European Remote Sensing satellite (ERS‐1) covering an area in Lady Ann Strait and Jones Sound, Nunavut, from January to March 1992. The presence of fast ice in Jones Sound and glaciers and ice caps on the surrounding islands provides an ideal setting for temporal backscatter studies of ice surfaces. Sample regions for eight different ice types were selected and the temporal backscatter variation was studied. The observed backscatter values for each ice type characterize the radar signatures of the ice surfaces. This time series of twenty‐four SAR images over a 3‐month period provides new insights into the degree of temporal variability of each surface. Ice caps exhibit the highest backscatter value of ‐3.9 dB with high temporal variability. Valley glacier ice backscatter values decrease with decreasing altitude, and are temporally the most stable, with standard deviations of 0.08–0.10 dB over the 90‐day period.

First‐year ice and lead ice show a negative trend in backscatter values in time and a positive correlation of up to 0.59 with air temperature over the 90‐day period. For first‐year ice and lead ice, episodes of large temperature fluctuations (±12°C) are associated with rapid changes in backscatter values (±2 dB). We attribute the backscatter increase to a temperature‐induced increase in brine volume at the base of the snow pack. Multi‐year ice, conglomerate ice and shore ice are relatively stable over the 3‐month period, with a backscatter variation of only a few dBs. An observed lag time of up to three days between backscatter increase/decrease and air temperature can be attributed to the insulation effect of the snow cover over sea ice. The net range of the backscatter values observed on the most temporally stable surface, valley glacier ice, of about 0.30 dB indicates that the ERS‐1 SAR instrument exceeds the 1 dB calibration accuracy specified for the Alaska SAR Facility processor for the three winter months.  相似文献   
17.
In projections of twenty-first century climate, Arctic sea ice declines and at the same time exhibits strong interannual anomalies. Here, we investigate the potential to predict these strong sea-ice anomalies under a perfect-model assumption, using the Max-Planck-Institute Earth System Model in the same setup as in the Coupled Model Intercomparison Project Phase 5 (CMIP5). We study two cases of strong negative sea-ice anomalies: a 5-year-long anomaly for present-day conditions, and a 10-year-long anomaly for conditions projected for the middle of the twenty-first century. We treat these anomalies in the CMIP5 projections as the truth, and use exactly the same model configuration for predictions of this synthetic truth. We start ensemble predictions at different times during the anomalies, considering lagged-perfect and sea-ice-assimilated initial conditions. We find that the onset and amplitude of the interannual anomalies are not predictable. However, the further deepening of the anomaly can be predicted for typically 1 year lead time if predictions start after the onset but before the maximal amplitude of the anomaly. The magnitude of an extremely low summer sea-ice minimum is hard to predict: the skill of the prediction ensemble is not better than a damped-persistence forecast for lead times of more than a few months, and is not better than a climatology forecast for lead times of two or more years. Predictions of the present-day anomaly are more skillful than predictions of the mid-century anomaly. Predictions using sea-ice-assimilated initial conditions are competitive with those using lagged-perfect initial conditions for lead times of a year or less, but yield degraded skill for longer lead times. The results presented here suggest that there is limited prospect of predicting the large interannual sea-ice anomalies expected to occur throughout the twenty-first century.  相似文献   
18.
Karst spring responses examined by process-based modeling   总被引:8,自引:0,他引:8  
Birk S  Liedl R  Sauter M 《Ground water》2006,44(6):832-836
Ground water in karst terrains is highly vulnerable to contamination due to the rapid transport of contaminants through the highly conductive conduit system. For contamination risk assessment purposes, information about hydraulic and geometric characteristics of the conduits and their hydraulic interaction with the fissured porous rock is an important prerequisite. The relationship between aquifer characteristics and short-term responses to recharge events of both spring discharge and physicochemical parameters of the discharged water was examined using a process-based flow and transport model. In the respective software, a pipe-network model, representing fast conduit flow, is coupled to MODFLOW, which simulates flow in the fissured porous rock. This hybrid flow model was extended to include modules simulating heat and reactive solute transport in conduits. The application of this modeling tool demonstrates that variations of physicochemical parameters, such as solute concentration and water temperature, depend to a large extent on the intensity and duration of recharge events and provide information about the structure and geometry of the conduit system as well as about the interaction between conduits and fissured porous rock. Moreover, the responses of solute concentration and temperature of spring discharge appear to reflect different processes, thus complementing each other in the aquifer characterization.  相似文献   
19.
Drastic changes were detected in glacial systems of the Antarctic Peninsula in the last decades. The observed phenomena comprise the disintegration of ice shelves, acceleration and thinning of glaciers, and retreat of glacier fronts. However, due to the lack of consistent systematic observations in particular of the higher parts of the glacial systems, it is difficult to predict further responses of the Antarctic Peninsula glaciers to climatic change. The present paper analyses spatial and temporal variations of changes in the dry-snow line altitude on the Antarctic Peninsula as extracted from a time series (1992–2005) of ERS-1/2 SAR and Envisat ASAR data. Upward changes in dry-snow line altitude were observed in general, and are attributed to extreme high-temperature events impacting the central plateaus of the Antarctic Peninsula and the increasing duration of warming periods. A mean decrease in dry-snow line altitude was detected on the west side of the peninsula and is identified as a response to recorded increase in precipitation and accumulation. These results validate the capability of SAR data for deriving superficial parameters of glaciers to be used as indicators of climatic changes in high-latitude regions where operational restrictions limit conventional meteorological observations.  相似文献   
20.
Present rate of uplift in Fennoscandia from GRACE and absolute gravimetry   总被引:2,自引:0,他引:2  
Fennoscandia is a key region for studying effects of glacial isostatic adjustment. The associated mass variations can be detected by the Gravity Recovery and Climate Experiment (GRACE) satellite mission, which observes the Earth's gravity field since April 2002, as well as by absolute gravimetry field campaigns. Since 2003, annual absolute gravity (AG) measurements have been performed in Fennoscandia by the Institut für Erdmessung (IfE, Institute of Geodesy) of the Leibniz Universität Hannover, Germany, within a multi-national cooperation. This offers a unique opportunity for validation and evaluation of the GRACE results. In this preliminary study, the GRACE results are compared to secular gravity changes based on the surveys from 2004 to 2007 with the FG5-220 gravimeter of the IfE.The results from GRACE monthly solutions provided by different analysis centres show temporal gravity variations in Fennoscandia. The included secular variations are in good agreement with former studies. The uplift centre is located west of the Bothnian Bay, the whole uplift area comprises Northern Europe. Nevertheless, the differences between the GRACE solutions are larger than expected and the different centre-specific processing techniques have a very strong effect on possible interpretations of GRACE results. The comparison of GRACE to the AG measurements reveals that the determined trends fit well with results from GRACE at selected stations, especially for the solution provided by the GFZ. Variations of land hydrology clearly influence results from GRACE and the AG measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号