首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   657篇
  免费   15篇
  国内免费   6篇
测绘学   20篇
大气科学   40篇
地球物理   142篇
地质学   168篇
海洋学   58篇
天文学   201篇
综合类   4篇
自然地理   45篇
  2024年   1篇
  2022年   1篇
  2021年   4篇
  2020年   6篇
  2019年   8篇
  2018年   14篇
  2017年   7篇
  2016年   11篇
  2015年   14篇
  2014年   22篇
  2013年   37篇
  2012年   32篇
  2011年   32篇
  2010年   26篇
  2009年   41篇
  2008年   30篇
  2007年   38篇
  2006年   27篇
  2005年   34篇
  2004年   54篇
  2003年   35篇
  2002年   37篇
  2001年   29篇
  2000年   25篇
  1999年   21篇
  1998年   21篇
  1997年   9篇
  1996年   11篇
  1995年   8篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1976年   1篇
  1915年   1篇
排序方式: 共有678条查询结果,搜索用时 15 毫秒
61.
We investigate the dependence of the strength of galaxy clustering on intrinsic luminosity using the Anglo-Australian two degree field galaxy redshift survey (2dFGRS). The 2dFGRS is over an order of magnitude larger than previous redshift surveys used to address this issue. We measure the projected two-point correlation function of galaxies in a series of volume-limited samples. The projected correlation function is free from any distortion of the clustering pattern induced by peculiar motions and is well described by a power law in pair separation over the range     . The clustering of     galaxies in real space is well-fitted by a correlation length     and power-law slope     . The clustering amplitude increases slowly with absolute magnitude for galaxies fainter than M *, but rises more strongly at higher luminosities. At low luminosities, our results agree with measurements from the Southern Sky Redshift Survey 2 by Benoist et al. However, we find a weaker dependence of clustering strength on luminosity at the highest luminosities. The correlation function amplitude increases by a factor of 4.0 between     and −22.5, and the most luminous galaxies are 3.0 times more strongly clustered than L * galaxies. The power-law slope of the correlation function shows remarkably little variation for samples spanning a factor of 20 in luminosity. Our measurements are in very good agreement with the predictions of the hierarchical galaxy formation models of Benson et al.  相似文献   
62.
New pollen and radiocarbon data from an 8.6-m coastal section, Cape Shpindler (69°43′N; 62°48′E), Yugorski Peninsula, document the latest Pleistocene and Holocene environmental history of this low Arctic region. Twelve AMS 14C dates indicate that the deposits accumulated since about 13,000 until 2000 radiocarbon years BP. A thermokarst lake formed ca. 13,000–12,800 years BP, when scarce arctic tundra vegetation dominated the area. By 12,500 years BP, a shallow lake existed at the site, and Arctic tundra with Poaceae, Cyperaceae, Salix, Saxifraga, and Artemisia dominated nearby vegetation. Climate was colder than today. Betula nana became dominant during the Early Preboreal period about 9500 years BP, responding to a warm event, which was one of the warmest during the Holocene. Decline in B. nana and Salix after 9500 years BP reflects a brief event of Preboreal cooling. A subsequent increase in Betula and Alnus fruticosa pollen percentages reflects amelioration of environmental conditions at the end of Preboreal period (ca. 9300 years BP). A decline in arboreal taxa later, with a dramatic increase in herb taxa, reflects a short cold event at about 9200 years BP. The pollen data reflect a northward movement of tree birch, peaking at the middle Boreal period, around 8500 years BP. Open Betula forest existed on the Kara Sea coast of the Yugorski Peninsula during the Atlantic period (8000–4500 years BP), indicating that climate was significantly warmer than today. Deteriorating climate around the Atlantic–Subboreal boundary (ca. 4500 years BP) is recorded by a decline in Betula percentages. Sedimentation slowed at the site, and processes of denudation and/or soil formation started at the beginning of the Subatlantic period, when vegetation cover on Yugorski Peninsula shifted to near-modern assemblages.  相似文献   
63.
64.
65.
Small mountain glaciers have short mass balance response times to climate change and are consequently very important for short‐term contributions to sea level. However, a distinct research and knowledge gap exists between (1) wider regional studies that produce overview patterns and trends in glacier changes, and (2) in situ local scale studies that emphasise spatial heterogeneity and complexity in glacier responses to climate. This study of a small glacier in central Austria presents a spatiotemporally detailed analysis of changes in glacier geometry and changes in glaciological behaviour. It integrates geomorphological surveys, historical maps, aerial photographs, airborne LiDAR data, ground‐based differential global positioning surveys and Ground Penetrating Radar surveys to produce three‐dimensional glacier geometry at 13 time increments spanning from 1850 to 2013. Glacier length, area and volume parameters all generally showed reductions with time. The glacier equilibrium line altitude increased by 90 m between 1850 and 2008. Calculations of the mean bed shear stress rapidly approaching less than 100 kPA, of the volume–area ratio fast approaching 1.458, and comparison of the geometric reconstructions with a 1D theoretical model could together be interpreted to suggest evolution of the glacier geometry towards steady state. If the present linear trend in declining ice volume continues, then the Ödenwinkelkees will disappear by the year 2040, but we conceptualise that non‐linear effects of bed overdeepenings on ice dynamics, of supraglacial debris cover on the surface energy balance, and of local topographically driven controls, namely wind‐redistributed snow deposition, avalanching and solar shading, will become proportionally more important factors in the glacier net balance.  相似文献   
66.
67.
Abstract

Summer severe weather (SSW) can strike suddenly and unexpectedly with disastrous consequences for human activity. Considerable progress has been made in the past ten years in the operational forecasting of SSW. Traditionally, SSW was defined to consist of tornadoes, strong winds, hail, lightning and heavy rain. Hazardous types of strong winds have recently been expanded to include microbursts, macrobursts and surfacing rear inflow jet damage behind mesoscale convective systems. Doppler radar was used to relate surface damage to the appropriate atmospheric phenomena, first diagnostically and then prognostically. This improvement in classification has fedback to and improved the forecast process. Concurrent progress has been made in the use of synoptic observations. The concept of helical wind profiles and improved knowledge of the role of dry mid‐level air has improved the forecasting of tornadoes and strong gusty winds. Moisture flux convergence, derived from surface measurements, shows great promise in identifying areas of storm initiation. Satellite imagery has been used to identify dynamical atmospheric boundaries. Numerical modelling of the interaction of environmental wind profiles and individual thunderstorms has greatly contributed to the understanding of SSW. Studies of spatial and temporal patterns of lightning, both specific cases and climatology, contribute to the forecasting of severe storms. Polarization radar results have shown progress in separating the signals of hail from those of rain and in the improved measurement of heavy rainfalls. Radar observation of clear air boundaries and their interactions show potential for the forecasting of thunderstorm initiation. Though not traditionally considered part of SSW, hurricanes that evolve into extra‐tropical storms share many of the same hazardous features. The progress in computing, communications and display technologies has also made substantial contributions to operational forecasting and to the dissemination of weather warnings.  相似文献   
68.
With 80 % of world trade carried by sea, seaports provide crucial linkages in global supply-chains and are essential for the ability of all countries to access global markets. Seaports are likely to be affected directly and indirectly by climatic changes, with broader implications for international trade and development. Due to their coastal location, seaports are particularly vulnerable to extreme weather events associated with increasing sea levels and tropical storm activity, as illustrated by hurricane “Sandy”. In view of their strategic role as part of the globalized trading system, adapting ports in different parts of the world to the impacts of climate change is of considerable importance. Reflecting the views of a diverse group of stakeholders with expertise in climate science, engineering, economics, policy, and port management, this essay highlights the climate change challenge for ports and suggests a way forward through the adoption of some initial measures. These include both “soft” and “hard” adaptations that may be spearheaded by individual port entities, but will require collaboration and support from a broad range of public and private sector stakeholders and from society at large. In particular, the essay highlights a need to shift to more holistic planning, investment and operation.  相似文献   
69.
Scientific momentum is increasing behind efforts to develop geoengineering options, but it is widely acknowledged that the challenges of geoengineering are as much political and social as they are technical. Legislators are looking for guidance on the governance of geoengineering research and possible deployment. The Oxford Principles are five high-level principles for geoengineering governance. This article explains their intended function and the core societal values which they attempt to capture. Finally, it proposes a framework for their implementation in a flexible governance architecture through the formulation of technology-specific research protocols.  相似文献   
70.
Emission-line regions in active galactic nuclei (AGNs) and other photoionized nebulae should become larger in size when the ionizing luminosity increases. This 'breathing' effect is observed for the Hβ emission in NGC 5548 by using Hβ and optical continuum light curves from the 13-yr (1989–2001) AGN Watch monitoring campaign. To model the breathing, we use two methods to fit the observed light curves in detail: (i) parametrized models and, (ii) the memecho reverberation-mapping code. Our models assume that optical continuum variations track the ionizing radiation, and that the Hβ variations respond with time-delays τ due to light travel-time. By fitting the data using a delay-map  Ψ(τ, F c)  that is allowed to change with continuum flux F c, we find that the strength of the Hβ response decreases and the time-delay increases with ionizing luminosity. The parametrized breathing models allow the time-delay and the Hβ flux to depend on the continuum flux so that,  τ∝ F βc  and   F ∝ F αc  . Our fits give  0.1 < β < 0.46  and  0.57 < α < 0.66. α  is consistent with previous work by Gilbert and Peterson, and Goad, Korista and Knigge. Although we find β to be flatter than previously determined by Peterson et al. using cross-correlation methods, it is closer to the predicted values from recent theoretical work by Korista and Goad.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号