首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   437篇
  免费   15篇
  国内免费   6篇
测绘学   52篇
大气科学   19篇
地球物理   76篇
地质学   176篇
海洋学   16篇
天文学   104篇
综合类   6篇
自然地理   9篇
  2023年   2篇
  2022年   2篇
  2021年   8篇
  2020年   6篇
  2019年   11篇
  2018年   16篇
  2017年   21篇
  2016年   32篇
  2015年   19篇
  2014年   25篇
  2013年   38篇
  2012年   32篇
  2011年   20篇
  2010年   21篇
  2009年   16篇
  2008年   18篇
  2007年   12篇
  2006年   12篇
  2005年   12篇
  2004年   4篇
  2003年   11篇
  2002年   8篇
  2001年   4篇
  2000年   4篇
  1999年   8篇
  1997年   8篇
  1996年   4篇
  1995年   8篇
  1994年   4篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1990年   8篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1977年   2篇
  1974年   3篇
  1973年   4篇
  1970年   2篇
  1969年   3篇
  1968年   2篇
  1963年   1篇
  1961年   1篇
  1928年   1篇
排序方式: 共有458条查询结果,搜索用时 62 毫秒
11.
12.
13.
The present work addresses the long-standing issues on the characterization aspect of the Proterozoic siliciclastic successions exposed in the central part of the Lesser Himalaya, restricted between the Main Boundary Thrust (MBT) and the Main Central Thrust (MCT). Geologic, sedimentologic, and petrographic study divides the Lesser Himalaya in two zones- northern Palaeo- Mesoproterozoic Inner Lesser Himalayan (ILH) and southern Neoproterozoic Outer Lesser Himalayan (OLH) zones. The major lithofacies recognized from the zones are - (i) coarse grained siliciclastic (CGS), (ii) interbedded medium and fine-grained siliciclastic (IMFS), (iii) argillite (ARG), and (iv) siliciclastic–argillite rhythmites (SAR). Amongst all these facies, the nearshore IMFS facies shows consistent presence in both OLH and ILH zones. From the facies distribution pattern, a northwest–southeasterly trending palaeo- shoreline has been envisaged. The CGS facies in the ILH hints towards an alluvial fan setting during 1.8 Ga rifting phase associated with penecontemporaneous basic magmatism. Compositionally, the siliciclastics of both the zones (ILH and OLH) are arenite and wacke types with minimal variation in their detrital proportions, derived from the early Proterozoic (between 2.4-1.6Ga) Aravalli-Delhi Supergroup provenance. Nearly matching types and content of detrital modes and the lithofacies pattern of the ILH and OLH siliciclastics probably conclude the derivation from the rising (nearby) Aravalli-Delhi orogen and deposition in a foreland like situation.  相似文献   
14.
15.
Curvature describes about the bending of surface by which a surface deviates from flat plane or a curve deviates from straight. The Himalaya has numerous geodynamic features with complex geological setup and extreme undulating topography. In this context, interpretation of gravity data has been used for enhancing important features to delineate structural trend for understanding thrust-fault locations and crustal structural setup in north-west Himalaya. Gravity data interpretation not only help to study varying lateral changes in density with lithological changes but also properties of gradients to interpret sub-surface structure and edges of the geological features. Attempt has been made to interpret various curvatures analysis like maximum, minimum, most-positive and most-negative curvatures using Bouguer gravity data to estimate the automatic thrust-fault locations in Dehradun-Badrinath area falling in the north-western part of Himalaya, India.  相似文献   
16.
A field experiment was conducted from 2 May 2010 to 1 May 2012 in the Gurbantunggut Desert, the second largest desert in China, to investigate saltation activity and its threshold velocity, and their relations with atmospheric and soil conditions. The results showed that saltation activity occurred more frequently during 08:00–20:00 Local Standard Time in spring and summer, with air temperatures between 20.0 and 29.0 °C, water vapor pressures between 0.6 and 0.9 kPa, soil temperatures between 25.0 and 30.0 °C, and a soil moisture lower than 0.04 m3/m3. At 2 m height, the saltation threshold velocity varied between 11.1 and 13.9 m/s, with a mean of 12.5 m/s. Threshold velocity showed clear seasonal variations in the following sequence: spring (11.7 m/s) < autumn (12.7 m/s) < summer (13.6 m/s). Affected by soil conditions, aeolian sand transport was weak, with an average annual aeolian sand that transported across a section (1.0 m × 2.0 m) of less than 6.0 kg.  相似文献   
17.
Spatio‐temporal prediction and forecasting of land surface temperature (LST) are relevant. However, several factors limit their usage, such as missing pixels, line drops, and cloud cover in satellite images. Being measured close to the Earth's surface, LST is mainly influenced by the land use/land cover (LULC) distribution of the terrain. This article presents a spatio‐temporal interpolation method which semantically models LULC information for the analysis of LST. The proposed spatio‐temporal semantic kriging (ST‐SemK) approach is presented in two variants: non‐separable ST‐SemK (ST‐SemKNSep) and separable ST‐SemK (ST‐SemKSep). Empirical studies have been carried out with derived Landsat 7 ETM+ satellite images of LST for two spatial regions: Kolkata, India and Dallas, Texas, U.S. It has been observed that semantically enhanced spatio‐temporal modeling by ST‐SemK yields more accurate prediction results than spatio‐temporal ordinary kriging and other existing methods.  相似文献   
18.
It is important to identify and locate glacial lakes for assessing any potential hazard. This study presents a combination of semi-automatic method Double-Window Flexible Pace Search (DFPS) and edge detection technique to identify glacial lakes using Sentinel 2A satellite data. Initially, Normalized Difference Water Index (NDWI) has been used to identify water and non-water areas, while DFPS and Edge detection technique has been used to identify an optimum threshold value to distinguish between water and shadow areas. The optimal threshold from DFPS process is 0.21, while threshold value of gradient magnitude using edge detection process is 0.318. The number of glacial lakes identified using the above algorithm is in close agreement with previously published results on glacial lakes in Gangotri glacier using different techniques. Thus, a combination of DFPS and edge detection process has successfully segregated glacial lakes from other features present in Gangotri glacier.  相似文献   
19.
Seismic properties of sediments are strongly influenced by pore fluids. Stiffness of unconsolidated marine sediment increases with the presence of gas hydrate and decreases with the presence of gas. A strong bottom-simulating reflector (BSR) observed on a seismic profile in the Makran accretionary prism, offshore Pakistan, indicates the presence of gas hydrate and free-gas across the BSR. Elastic properties of gas depend largely on pressure and temperature. We, therefore, first determine the elastic modulus of gas at pressure and temperature calculated at the BSR depth in the study region. The interval velocities derived from the seismic data are interpreted by the effective medium theory, which is a combination of self-consistent approximation and differential effective medium theories, together with a smoothing approximation, for assessment of gas hydrate and free-gas. The results show the saturations of gas hydrate and free-gas as 22 and 2.4% of pore space, respectively, across the BSR.  相似文献   
20.
The Lonar impact crater, India, is one of the few known terrestrial impact craters excavated in continental basaltic target rocks (Deccan Traps, ~65 Ma). The impactites reported from the crater to date mainly include centimeter‐ to decimeter‐sized impact‐melt bombs, and aerodynamically shaped millimeter‐ and submillimeter‐sized impact spherules. They occur in situ within the ejecta around the crater rim and show schlieren structure. In contrast, non–in situ glassy objects, loosely strewn around the crater lake and in the ejecta around the crater rim do not show any schlieren structure. These non–in situ fragments appear to be similar to ancient bricks from the Daityasudan temple in the Lonar village. Synthesis of existing and new major and trace element data on the Lonar impact spherules show that (1) the target Lonar basalts incorporated into the spherules had undergone minimal preimpact alteration. Also, the paleosol layer as preserved between the top‐most target basalt flow and the ejecta blanket, even after the impact, was not a source component for the Lonar impactites, (2) the Archean basement below the Deccan traps were unlikely to have contributed material to the impactite parental melts, and (3) the impactor asteroid components (Cr, Co, Ni) were concentrated only within the submillimeter‐sized spherules. Two component mixing calculations using major oxides and Cr, Co, and Ni suggest that the Lonar impactor was a EH‐type chondrite with the submillimeter‐sized spherules containing ~6 wt% impactor components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号