首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   8篇
测绘学   13篇
大气科学   28篇
地球物理   52篇
地质学   60篇
海洋学   11篇
天文学   34篇
自然地理   21篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   15篇
  2015年   12篇
  2014年   9篇
  2013年   7篇
  2012年   23篇
  2011年   13篇
  2010年   6篇
  2009年   12篇
  2008年   10篇
  2007年   12篇
  2006年   6篇
  2005年   15篇
  2004年   11篇
  2003年   9篇
  2002年   8篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   2篇
  1982年   2篇
  1980年   1篇
  1976年   1篇
  1970年   1篇
  1966年   1篇
排序方式: 共有219条查询结果,搜索用时 78 毫秒
141.
142.
Abstract— The newly found meteorite Northwest Africa 6234 (NWA 6234) is an olivine (ol)‐phyric shergottite that is thought, based on texture and mineralogy, to be paired with Martian shergottite meteorites NWA 2990, 5960, and 6710. We report bulk‐rock major‐ and trace‐element abundances (including Li), abundances of highly siderophile elements, Re‐Os isotope systematics, oxygen isotope ratios, and the lithium isotope ratio for NWA 6234. NWA 6234 is classified as a Martian shergottite, based on its oxygen isotope ratios, bulk composition, and bulk element abundance ratios, Fe/Mn, Al/Ti, and Na/Al. The Li concentration and δ7Li value of NWA 6234 are similar to that of basaltic shergottites Zagami and Shergotty. The rare earth element (REE) pattern for NWA 6234 shows a depletion in the light REE (La‐Nd) compared with the heavy REE (Sm‐Lu), but not as extreme as the known “depleted” shergottites. Thus, NWA 6234 is suggested to belong to a new category of shergottite that is geochemically “intermediate” in incompatible elements. The only other basaltic or ol‐phyric shergottite with a similar “intermediate” character is the basaltic shergottite NWA 480. Rhenium‐osmium isotope systematics are consistent with this intermediate character, assuming a crystallization age of 180 Ma. We conclude that NWA 6234 represents an intermediate compositional group between enriched and depleted shergottites and offers new insights into the nature of mantle differentiation and mixing among mantle reservoirs in Mars.  相似文献   
143.
Processing of the oceanic lithosphere in subduction zones gives rise to arc magmatism, and strong compositional links exist between trench input and arc output. Here we address the question whether these compositional links are sufficiently strong to allow for ‘tracing’ the composition of the sedimentary and igneous oceanic crust through the chemistry of arcs. The tracing approach hinges critically on whether key characteristics of the subducted slab are transmitted to arcs. Results from forward and inverse modeling, verified by observations from modern arc settings, demonstrate that elements Sr, Pb, Nd and Hf that are associated with radiogenic isotopes may preserve chemical characteristics of the subducted slab in arc magmas. The data indicate that the much thicker igneous subducted crust dominates the recycled flux to arcs. The flux from the highly enriched, but thin sediment layer is buffered, and may be even concealed, by the concomitant contributions from igneous crust, and/or subarc mantle, despite the much better visibility of sediment components in trace element and isotope space. Arc Pb and Pb isotopes are the most promising tracers that may capture the isotopic diversity of subducted MORB-type and OIB-type crust with sufficient temporal and spatial resolution. While arc Sr is also strongly controlled by the flux from the subducted crust, arc data may allow for distinguishing among radiogenic Sr recycled from altered oceanic crust or from subducted sediment in moderately radiogenic arcs (87Sr/86Sr < ~ 0.7045). Co-mingling of Nd and Hf from igneous subducted crust with mantle contributions mostly hinders the isotopic identification of subducted crust through arc chemistry. However, Nd and Hf may provide complementary information about the efficiency of recycling, and recycling via subduction erosion.The tracing approach appears feasible in Cenozoic arcs where much of the original subduction context is preserved. First results from the Izu Bonin and Central American arcs show that plate tectonic events like oceanic plate formation and destruction, subduction of hotspot tracks and the closure of oceanic gateways are recorded in the chemistry of arcs. A comparative evaluation of Cenozoic global arcs may hence significantly complement the information from the modern oceanic basins, help to obtain a more complete image of the oceanic crustal composition and implicate the geochemical processes by which it formed. Possibly, the tracing approach may also be useful in ancient, inactive arcs to obtain information on the composition of oceanic crust subducted in the geological past.  相似文献   
144.
145.
Thermal water samples and related young and fossil mineralization from a geothermal system at the northern margin of the Upper Rhine Graben have been investigated by combining hydrochemistry with stable and Sr isotope geochemistry. Actively discharging thermal springs and mineralization are present in a structural zone that extends over at least 60 km along strike, with two of the main centers of hydrothermal activity being Wiesbaden and Bad Nauheim. This setting provides the rare opportunity to link the chemistry and isotopic signatures of modern thermal waters directly with fossil mineralization dating back to at least 500–800 ka. The fossil thermal spring mineralization can be classified into two major types: barite-(pyrite) fracture filling associated with laterally-extensive silicification; and barite, goethite and silica impregnation mineralization in Tertiary sediments. Additionally, carbonatic sinters occur around active springs. Strontium isotope and trace element data suggest that mixing of a hot (>100 °C), deep-sourced thermal water with cooler groundwater from shallow aquifers is responsible for present-day thermal spring discharge and fossil mineralization. The correlation between both Sr and S isotope ratios and the elevation of the barite mineralization relative to the present-day water table in Wiesbaden is explained by mixing of deep-sourced thermal water having high 87Sr/86Sr and low δ34S with shallow groundwater of lower 87Sr/86Sr and higher δ34S. The Sr isotope data demonstrate that the hot thermal waters originate from an aquifer in the Variscan crystalline basement at depths of 3–5 km. The S isotope data show that impregnation-type mineralization is strongly influenced by mixing with SO4 that has high δ34S values. The fracture style mineralization formed by cooling of the thermal waters, whereas impregnation-type mineralization precipitated by mixing with SO4-rich groundwater percolating through the sediments.  相似文献   
146.
The Jurassic (approximately 145 Ma) Nambija oxidized gold skarns are hosted by the Triassic volcanosedimentary Piuntza unit in the sub-Andean zone of southeastern Ecuador. The skarns consist dominantly of granditic garnet (Ad20–98) with subordinate pyroxene (Di46–92Hd17–42Jo0–19) and epidote and are spatially associated with porphyritic quartz-diorite to granodiorite intrusions. Endoskarn is developed at the intrusion margins and grades inwards into a potassic alteration zone. Exoskarn has an outer K- and Na-enriched zone in the volcanosedimentary unit. Gold mineralization is associated with the weakly developed retrograde alteration of the exoskarn and occurs mainly in sulfide-poor vugs and milky quartz veins and veinlets in association with hematite. Fluid inclusion data for the main part of the prograde stage indicate the coexistence of high-temperature (500°C to >600°C), high-salinity (up to 65 wt.% eq. NaCl), and moderate- to low-salinity aqueous-carbonic fluids interpreted to have been trapped at pressures around 100–120 MPa, corresponding to about 4-km depth. Lower-temperature (510–300°C) and moderate- to low-salinity (23–2 wt.% eq. NaCl) aqueous fluids are recorded in garnet and epidote of the end of the prograde stage. The microthermometric data (Th from 513°C to 318°C and salinity from 1.0 to 23 wt.% eq. NaCl) and δ18O values between 6.2‰ and 11.5‰ for gold-bearing milky quartz from the retrograde stage suggest that the ore-forming fluid was dominantly magmatic. Pressures during the early retrograde stage were in the range of 50–100 MPa, in line with the evidence for CO2 effervescence and probable local boiling. The dominance of magmatic low-saline to moderately saline oxidizing fluids during the retrograde stage is consistent with the depth of the skarn system, which could have delayed the ingression of external fluids until relatively low temperatures were reached. The resulting low water-to-rock ratios explain the weak retrograde alteration and the compositional variability of chlorite, essentially controlled by host rock compositions. Gold was precipitated at this stage as a result of cooling and pH increase related to CO2 effervescence, which both result in destabilization of gold-bearing chloride complexes. Significant ingression of external fluids took place after gold deposition only, as recorded by δ18O values of 0.4‰ to 6.2‰ for fluids depositing quartz (below 350°C) in sulfide-rich barren veins. Low-temperature (<300°C) meteoric fluids (δ18Owater between −10.0‰ and −2.0‰) are responsible for the precipitation of late comb quartz and calcite in cavities and veins and indicate mixing with cooler fluids of higher salinities (about 100°C and 25 wt.% eq. NaCl). The latter are similar to low-temperature fluids (202–74.5°C) with δ18O values of −0.5‰ to 3.1‰ and salinities in the range of 21.1 to 17.3 wt.% eq. CaCl2, trapped in calcite of late veins and interpreted as basinal brines. Nambija represents a deep equivalent of the oxidized gold skarn class, the presence of CO2 in the fluids being partly a consequence of the relatively deep setting at about 4-km depth. As in other Au-bearing skarn deposits, not only the prograde stage but also the gold-precipitating retrograde stage is dominated by fluids of magmatic origin.  相似文献   
147.
Meteorite “finds” from the terrestrial hot deserts have become a major contributor to the inventory of Martian meteorites. In order to understand their nitrogen and noble gas components, we have carried out stepped heating experiments on samples from two Martian meteorites collected from hot deserts. We measured interior and surface bulk samples, glassy and non-glassy portions of Dar al Gani 476 and Sayh al Uhaymir 005. We have also analyzed noble gases released from the Antarctic shergottite Lewis Cliff 88516 by crushing and stepped heating. For the hot desert meteorites significant terrestrial Ar, Kr, Xe contamination is observed, with an elementally fractionated air (EFA) component dominating the low temperature releases. The extremely low Ar/Kr/Xe ratios of EFA may be the result of multiple episodes of trapping/loss during terrestrial alteration involving aqueous fluids. We suggest fractionation processes similar to those in hot deserts to have acted on Mars, with acidic weathering on the latter possibly even more effective in producing elementally fractionated components. Addition from fission xenon is apparent in DaG 476 and SaU 005. The Ar-Kr-Xe patterns for LEW 88516 show trends as typically observed in shergottites - including evidence for a crush-released component similar to that observed in EETA 79001. A trapped Ne component most prominent in the surface sample of DaG 476 may represent air contamination. It is accompanied by little trapped Ar (20Ne/36Ar > 50) and literature data suggest its presence also in some Antarctic finds. Data for LEW 88516 and literature data, on the other hand, suggest the presence of two trapped Ne components of Martian origin characterized by different 20Ne/22Ne, possibly related to the atmosphere and the interior. Caution is recommended in interpreting nitrogen and noble gas isotopic signatures of Martian meteorites from hot deserts in terms of extraterrestrial sources and processes. Nevertheless our results provide hope that vice-versa, via noble gases and nitrogen in meteorites and other relevant samples from terrestrial deserts, Martian secondary processes can be studied.  相似文献   
148.
We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the ‘tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding.  相似文献   
149.
Adaptation,mitigation, and their disharmonious discontents: an essay   总被引:1,自引:1,他引:0  
The frequently heard call to harmonize adaptation and mitigation policies is well intended and many opportunities exist to realize co-benefits by designing and implementing both in mutually supportive ways. But critical tradeoffs (inadequate conditions, competition among means for implementation, and negative consequences of pursuing both simultaneously) also exist, along with policy disconnects that are shaped by history, sequencing, scale, contextual variables, and controversial climate discourses in the public. To ignore these issues can be expected to undermine a more comprehensive, better integrated climate risk management portfolio. The paper discusses various implications of these tradeoffs between adaptation and mitigation for science and policy.  相似文献   
150.
Regime-dependent evaluation is a relatively new approach to assess model performance. It consists of classifying the model biases according to a discrete number of regimes and evaluating model output within each regime. In this paper, the regimes are firstly defined by the large-scale atmospheric circulation, based on the objective Jenkinson-Collison classification technique which distinguishes synoptic patterns by strength, direction and vorticity of the geostrophic flow. Eight directional and two vorticity circulation regimes (circulation types) are specified. In this way, it is possible to quantify the model performance for cases with for example westerly winds only, or with cyclonic circulation only. A second regime classification is based on temperature, which allows for detection of temperature-dependent model performance. Modelled accumulated precipitation (mm/6?h) is evaluated with rain gauges for the years 2007 and 2008. Two variants of the COSMO model are evaluated: a fine-resolution version (2.8?km, COSMO-DE) and a coarse-resolution version (7?km, COSMO-EU). In COSMO-EU, a windward/leeward effect becomes visible since circulation is related to dominant wind direction, hence to windward and lee side of orography. In COSMO-DE, no circulation dependent but a height-related bias is identified and further explored, making use of temperature-dependent evaluation which unveils a positive model bias related to solid precipitation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号