首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   18篇
  国内免费   8篇
测绘学   3篇
大气科学   6篇
地球物理   51篇
地质学   53篇
海洋学   16篇
天文学   6篇
综合类   2篇
自然地理   8篇
  2022年   3篇
  2021年   9篇
  2020年   6篇
  2019年   6篇
  2018年   7篇
  2017年   12篇
  2016年   12篇
  2015年   6篇
  2014年   9篇
  2013年   14篇
  2012年   4篇
  2011年   8篇
  2010年   2篇
  2009年   5篇
  2008年   6篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   5篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1995年   1篇
  1991年   1篇
  1981年   1篇
  1979年   1篇
  1974年   1篇
排序方式: 共有145条查询结果,搜索用时 312 毫秒
41.
A consolidated picture of oil pollution for the northern Indian Ocean is presented. Oil slicks were sighted on 5582 observations, about 83.5% of the total observations of 6689. The range of concentrations, of the floating tar balls, is 0–6.0 mg/m2 in the Arabian Sea. Similarly, the oil tanker route in the Bay of Bengal has the range of 0–69.75 mg/m2. North of this route, the Bay of Bengal is comparatively free from this floating tar. Mean concentrations of dissolved and dispersed hydrocarbons for 0–20 m are 32.5 and 24.1 μg kg?1, respectively, in the Arabian Sea and the Bay of Bengal.  相似文献   
42.
Full waveform inversion in transversely isotropic media with a vertical symmetry axis provides an opportunity to better match the data at the near and far offsets. However, multi-parameter full waveform inversion, in general, suffers from serious cycle-skipping and trade-off problems. Reflection waveform inversion can help us recover a background model by projecting the residuals of the reflected wavefield along the reflection wavepath. Thus, we extend reflection waveform inversion to acoustic transversely isotropic media with a vertical symmetry axis utilizing the proper parameterization for reduced parameter trade-off. From a radiation patterns analysis, an acoustic transversely isotropic media with a vertical symmetry axis is better described by a combination of the normal-moveout velocity and the anisotropic parameters η and δ for reflection waveform inversion applications. We design a three-stage inversion strategy to construct the optimal resulting model. In the first stage, we only invert for the background by matching the simulated reflected wavefield from the perturbations of and δ with the observed reflected wavefield. In the second stage, the background and η are optimized simultaneously and the far-offset reflected wavefield mainly contribute to their updates. We perform Born modelling to compute the reflected wavefield for the two stages of reflection waveform inversion. In the third stage, we perform full waveform inversion for the acoustic transversely isotropic media with a vertical symmetry axis to delineate the high-wavenumber structures. For this stage, the medium is described by a combination of the horizontal velocity , η and ε instead of , η and δ. The acoustic multi-parameter full waveform inversion utilizes the diving waves to improve the background as well as utilizes reflection for high-resolution information. Finally, we test our inversion algorithm on the modified Sigsbee 2A model (a salt free part) and a two-dimensional line from a three-dimensional ocean bottom cable dataset. The results demonstrate that the proposed reflection waveform inversion approach can recover the background model for acoustic transversely isotropic media with a vertical symmetry axis starting from an isotropic model. This recovered background model can mitigate the cycle skipping of full waveform inversion and help the inversion recover higher resolution structures.  相似文献   
43.
44.
Kirchhoff 3D prestack migration, as part of its execution, usually requires repeated access to a large traveltime table data base. Access to this data base implies either a memory intensive or I/O bounded solution to the storage problem. Proper compression of the traveltime table allows efficient 3D prestack migration without relying on the usually slow access to the computer hard drive. Such compression also allows for faster access to desirable parts of the traveltime table. Compression is applied to the traveltime field for each source location on the surface on a regular grid using 3D Chebyshev polynomial or cosine transforms of the traveltime field represented in the spherical coordinates or the Celerity domain. We obtain practical compression levels up to and exceeding 20 to 1. In fact, because of the smaller size traveltime table, we obtain exceptional traveltime extraction speed during migration that exceeds conventional methods. Additional features of the compression include better interpolation of traveltime tables and more stable estimates of amplitudes from traveltime curvatures. Further compression is achieved using bit encoding, by representing compression parameters values with fewer bits.  相似文献   
45.
An open problem that arises when using modern iterative linear solvers, such as the preconditioned conjugate gradient method or Generalized Minimum RESidual (GMRES) method, is how to choose the residual tolerance in the linear solver to be consistent with the tolerance on the solution error. This problem is especially acute for integrated groundwater models, which are implicitly coupled to another model, such as surface water models, and resolve both multiple scales of flow and temporal interaction terms, giving rise to linear systems with variable scaling. This article uses the theory of "forward error bound estimation" to explain the correspondence between the residual error in the preconditioned linear system and the solution error. Using examples of linear systems from models developed by the US Geological Survey and the California State Department of Water Resources, we observe that this error bound guides the choice of a practical measure for controlling the error in linear systems. We implemented a preconditioned GMRES algorithm and benchmarked it against the Successive Over-Relaxation (SOR) method, the most widely known iterative solver for nonsymmetric coefficient matrices. With forward error control, GMRES can easily replace the SOR method in legacy groundwater modeling packages, resulting in the overall simulation speedups as large as 7.74×. This research is expected to broadly impact groundwater modelers through the demonstration of a practical and general approach for setting the residual tolerance in line with the solution error tolerance and presentation of GMRES performance benchmarking results.  相似文献   
46.
This study investigates the values of pH, total dissolved solids (TDS), elevation, oxidative reduction potential (ORP), temperature, and depth, while the concentrations of Br, and potentially harmful metals (PHMs) such as Cr, Ni, Cd, Mn, Cu, Pb, Co, Zn, and Fe in the groundwater samples. Moreover, geographic information system (GIS), XLSTAT, and IBM SPSS Statistics 20 software were used for spatial distribution modeling, principal component analysis (PCA), cluster analysis (CA), and Quantile-Quantile (Q-Q) plotting to determine groundwater pollution sources, similarity index, and normal distribution reference line for the selected parameters. The mean values of pH, TDS, elevation, ORP, temperature, depth, and Br were 7.2, 322 mg/L, 364 m, 188 mV, 29.6 °C, 70 m, 0.20 mg/L, and PHMs like Cr, Ni, Cd, Mn, Cu, Pb, Co, Zn, and Fe were 0.38, 0.26, 0.08, 0.27, 0.36, 0.22, 0.04, 0.43 and 0.86 mg/L, respectively. PHMs including Cr (89%), Cd (43%), Mn (23%), Pb (79%), Co (20%), and Fe (91%) exceeded the guideline values set by the world health organization (WHO). The significant R2 values of PCA for selected parameters were also determined (0.62, 0.67, 0.78, 0.73, 0.60, 0.87, ?0.50, 0.69, 0.70, 0.74, ?0.50, 0.70, 0.67, 0.79, 0.59, and ?0.55, respectively). PCA revealed three geochemical processes such as geogenic, anthropogenic, and reducing conditions. The mineral phases of Cd(OH)2, Fe(OH)3, FeOOH, Mn3O4, Fe2O3, MnOOH, Pb(OH)2, Mn(OH)2, MnO2, and Zn(OH)2 (?3.7, 3.75, 9.7, ?5.8, 8.9, ?3.6, 2.2, ?4.6, ?7.7, ?0.9, and 0.003, respectively) showed super-saturation and under-saturation conditions. Health risk assessment (HRA) values for PHMs were also calculated and the values of hazard quotient (HQ), and hazard indices (HI) for the entire study area were increased in the following order: Cd>Ni>Cu>Pb>Mn>Zn>Cr. Relatively higher HQ and HI values of Ni, Cd, Pb, and Cu were greater than one showing unsuitability of groundwater for domestic, agriculture, and drinking purposes. The long-term ingestion of groundwater could also cause severe health concerns such as kidney, brain dysfunction, liver, stomach problems, and even cancer.  相似文献   
47.
塔克拉玛干沙漠是亚洲沙尘气溶胶的重要源地。为探讨塔克拉玛干地区沙尘气溶胶的理化特性与时空变化,研究其环境与气候效应,本文分析了四个季节在中国敦煌(塔克拉玛干沙漠内)取得的探空气球观测数据,包括气溶胶的数浓度、粒径分布、质量浓度及在西风主导下的水平输送通量。气溶胶数浓度的垂直廓线显示,来自沙漠地区的矿物粒子对局地环境与气候有重要影响,且所有季节都存在长距离输送。粒子谱分布显示局地有大量粗粒子输入。结果说明,源于塔克拉玛干沙漠的沙尘气溶胶的背景输送有着重要的科学意义,需进一步研究其对东亚和西太平洋地区环境与气候的影响。  相似文献   
48.
Extended common‐image‐point gathers (CIP) constructed by wide‐azimuth TI wave‐equation migration contain all the necessary information for angle decomposition as a function of the reflection and azimuth angles at selected locations in the subsurface. The aperture and azimuth angles are derived from the extended images using analytic relations between the space‐ and time‐lag extensions using information which is already available at the time of migration, i.e. the anisotropic model parameters. CIPs are cheap to compute because they can be distributed in the image at the most relevant positions, as indicated by the geologic structure. If the reflector dip is known at the CIP locations, then the computational cost can be reduced by evaluating only two components of the space‐lag vector. The transformation from extended images to angle gathers is a planar Radon transform which depends on the local medium parameters. This transformation allows us to separate all illumination directions for a given experiment, or between different experiments. We do not need to decompose the reconstructed wavefields or to choose the most energetic directions for decomposition. Applications of the method include illumination studies in complex areas where ray‐based methods fail, and assuming that the subsurface illumination is sufficiently dense, the study of amplitude variation with aperture and azimuth angles.  相似文献   
49.
Maldives, a South Asian small island nation in the northern part of the Indian Ocean is extremely vulnerable to the impacts of Sea Level Rise (SLR) due to its low altitude from the mean sea level. This artricle attempts to estimate the recent rates of SLR in Maldives during different seasons of the year with the help of existing tidal data recorded in the Maldives coast. Corresponding Sea Surface Temperature (SST) trends, utilizing reliable satellite climatology, have also been obtained. The relationships between the SST and mean sea level have been comprehensively investigated. Results show that recent sea level trends in the Maldives coast are very high. At Male, the capital of the Republic of Maldives, the rising rates of Mean Tidal Level (MTL) are: 8.5, 7.6, and 5.8 mm/year during the postmonsoon (October-December), Premonsoon (March-May) and southwest monsoon (June-September) seasons respectively. At Gan, a station very close to the equator, the increasing rate of MTL is maximum during the period from June to September (which is 6.2 mm/year). These rising trends in MTL along the Maldives coast are certainly alarming for this small developing island nation, which is hardly one meter above the mean sea level. Thus there is a need for careful monitoring of future sea level changes in the Maldives coast. The trends presented are based on the available time-series of MTL for the Maldives coast, which are rather short. These trends need not necessarily reflect the long-term scenario. SST in the Maldives coast has also registered significant increasing trend during the period from June to September. There are large seasonal variations in the SST trends at Gan but SST and MTL trends at Male are consistently increasing during all the seasons and the rising rates are very high. The interannual mode of variation is prominent both in SST as well as MTL. Annual profile of MTL along the Maldives coast is bimodal, having two maxima during April and July. The April Mode is by far the dominant one. The SST appears to be the main factor governing the sea level variations along the Maldives coast. The influence of SST and sea level is more near the equatorial region (i.e., at Gan). There is lag of about two months for the maximum influence of SST on the sea level. The correlation coefficient between the smoothed SST and mean tidal level at Gan with lag of two months is as high as ~ +0.8, which is highly significant. The corresponding correlation coefficients at Male with the lags of one and two months are +0.5 and +0.3, respectively. Thus, the important finding of the present work for the Maldives coast is the dominance of SST factor in sea level variation, especially near the region close to the equator.  相似文献   
50.
Interannual variations of sea level along the Bangladesh coast are quite pronounced and often dominate the long-term sea level trends that are taking place. The El Niño/Southern Oscillation (ENSO) induced variation is an important component of interannual mode of variations. The present article deals with the relationship between the sea level variations along the Bangladesh coast and the Southern Oscillation phenomenon. The mean tide level data of monsoon season (June to September) pertaining to Hiron Point (in Sundarbans) and Char Changa (on the mouth of Meghna River) have been analyzed and correlated to the Southern Oscillation Index (SOI). The annual variation of mean tide level in the coastal areas of Bangladesh reveals that the tide level reaches its peak during the monsoon season. The maximum tide level during the calendar year is recorded in August. Thus, it is not surprising that the inundation of the coastal belt of Bangladesh due to the floods is most common during the summer monsoon season, especially from July to September. Therefore, the sea level variations during the monsoon are of paramount importance to Bangladesh. The results of the present study show that both at Hiron Point and Char Changa there is a substantial difference between the mean tide level during the El Niño and La Niña monsoons. The mean tide level at Hiron Point is higher by about 5 cm during August of La Niña years as compared to that during the El Niño years. The difference at Char Changa, which is located at the mouth of Meghna River, is much higher. This is probably due to the increased fresh water discharge into the Meghna River during La Niña years. Thus at the time of crossing of a monsoon depression, the chances of widespread inundation are higher during a La Nin~a year as compared to that during an El Niño year. The Correlation Coefficients (CCs) between Mean Tide Levels (MTLs) at Hiron Point and Char Changa and the SOI during September (at the end of monsoon) are +0.33 and +0.39 respectively. These CCs are statistically significant at 90% and 95% levels, respectively. These results may find applications in the preparedness programs for combating sea level associated disasters in Bangladesh.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号