首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7120篇
  免费   1577篇
  国内免费   2069篇
测绘学   773篇
大气科学   1282篇
地球物理   1788篇
地质学   3982篇
海洋学   965篇
天文学   359篇
综合类   691篇
自然地理   926篇
  2024年   50篇
  2023年   152篇
  2022年   444篇
  2021年   494篇
  2020年   398篇
  2019年   511篇
  2018年   481篇
  2017年   449篇
  2016年   514篇
  2015年   461篇
  2014年   503篇
  2013年   516篇
  2012年   540篇
  2011年   506篇
  2010年   489篇
  2009年   447篇
  2008年   415篇
  2007年   366篇
  2006年   286篇
  2005年   223篇
  2004年   189篇
  2003年   182篇
  2002年   261篇
  2001年   261篇
  2000年   224篇
  1999年   247篇
  1998年   180篇
  1997年   146篇
  1996年   130篇
  1995年   108篇
  1994年   97篇
  1993年   100篇
  1992年   81篇
  1991年   62篇
  1990年   38篇
  1989年   38篇
  1988年   47篇
  1987年   26篇
  1986年   25篇
  1985年   20篇
  1984年   14篇
  1983年   5篇
  1982年   7篇
  1981年   4篇
  1980年   5篇
  1979年   4篇
  1978年   3篇
  1976年   5篇
  1958年   10篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
191.
Nongla, a typical karst dynamic system (KDS) monitoring site, is located at Nongla Village, Mashan County, Guangxi, China. The data from a Greenspan CTDP300 multichannel data logger indicates that the KDS is highly sensitive to environmental changes. Multi-day and diurnal physico-chemical composition of epikarst spring water is quite different under different climatic conditions. During a day with no rainfall, water temperature and air temperature have similar variations. Electrical conductivity (EC) has good positive correlation with pH value and water temperature. During rainstorms, the physico-chemical composition of the spring water is initially strongly effected by dilution, pH and EC drop rapidly. However, half to one hour later, EC returns to normal and the CO2 effects will be the dominant physical effect. This is due to the high fissure rates and high permeability in the epikarst zone. Dilution effects were observed during the entire rainstorm event,whereas, it only acts during the earliest period of light rain. Therefore, it is necessary to examine the water–rock–CO2 combination as a whole system to explain the hydrochemical behavior of epikarst processes.  相似文献   
192.
2003年“雪龙号”北极科学考察期间,对沿途海洋大气进行采样,分析其中气相多环芳烃的空间分布。结果显示,气相中主要是2-4环的多环芳烃,其中菲为主要的化合物,平均占到总多环芳烃的55.1%。在整个航程的广泛区域尺度内,气相总多环芳烃浓度在1043.9-92993.1pg/m3。空间分布上,远东亚的海面>北太平洋海面>北极圈以内海面;总多环芳烃的浓度随纬度升高呈现显著降低的趋势。通过Clausius-Clapeyron方程对浓度和温度相互关系的分析表明,温度是控制气相多环芳烃长距离传输的主要因素。  相似文献   
193.
不同浓度的Na2SO4水溶液的拉曼光谱显示了SO42-的四个拉曼活性带:980 cm-1处的SO42-的对称伸缩振动模式v1带,1 106 cm-1处的反对称伸缩振动模式v3带,448 cm-1处的变形振动模式v2带和617 cm-1处的变形振动模式v4带。482 cm-1处的肩膀峰是由于NaSO4-离子对的形成对448 cm-1的v2带的影响而形成的SO42-的一个新的振动峰。浓Na2SO4水溶液中,水共享离子对[Na+.H2O.SO42-]-是主要的离子对物种。随着Na2SO4水溶液浓度的增加,Na+和SO42-的相互作用增强,NaSO4-离子对所占的摩尔分数增加。  相似文献   
194.
We present a drought reconstruction for southeastern China based on a tree‐ring width chronology of Cryptomeria fortunei developed from two sampling sites in central Fujian. A reconstruction of July–February drought variability, spanning AD 1855–2011, was developed by calibrating total tree‐ring width data with the self‐calibrating Palmer drought severity index (scPDSI). The reconstruction was verified against an independent data set, and accounts for 36% of the actual scPDSI variance during the period 1955–2011. Relatively dry intervals were reconstructed between AD 1859–1880, 1899–1911, 1927–1933, 1946–1959, 1964–1970 and 1987–1997. Relatively wet conditions prevailed during 1855–1858, 1881–1898, 1912–1926, 1934–1945, 1960–1963, 1971–1986 and 1998–2011. Comparisons between our scPDSI reconstruction and a moisture‐sensitive tree‐ring width record from Vietnam revealed consistencies between the two data sets, suggesting similar drought regimes. Spectral peaks of 2.2–6.4 years may be indicative of El Niño‐Southern Oscillation (ENSO) activity, as also suggested by the significant correlations with sea surface temperatures (SSTs) in the eastern equatorial and southeastern Pacific Ocean and an extreme event analysis. The analysis of links between our scPDSI reconstruction and the large‐scale regional climatic variation shows that there is a relationship between regional drought variation and East Asian summer monsoon (EASM) intensity.  相似文献   
195.
Quantifying the impact of landscape on hydrological variables is essential for the sustainable development of water resources. Understanding how landscape changes influence hydrological variables will greatly enhance the understanding of hydrological processes. Important vegetation parameters are considered in this study by using remote sensing data and VIC-CAS model to analyse the impact of landscape changes on hydrology in upper reaches of the Shule River Basin (URSLB). The results show there are differences in the runoff generation of landscape both in space and time. With increasing altitude, the runoff yields increased, with approximately 79.9% of the total runoff generated in the high mountains (4200–5900 m), and mainly consumed in the mid-low mountain region. Glacier landscape produced the largest runoff yields (24.9% of the total runoff), followed by low-coverage grassland (LG; 22.5%), alpine cold desert (AL; 19.6%), mid-coverage grassland (MG; 15.6%), bare land (12.5%), high-coverage grassland (HG; 4.5%) and shrubbery (0.4%). The relative capacity of runoff generation by landscapes, from high to low, was the glaciers, AL, LG, HG, MG, shrubbery and bare land. Furthermore, changes in landscapes cause hydrological variables changes, including evapotranspiration, runoff and baseflow. The study revealed that HG, MG, and bare land have a positive impact on evapotranspiration and a negative impact on runoff and baseflow, whereas AL and LG have a positive impact on runoff and baseflow and a negative impact on evapotranspiration. In contrast, glaciers have a positive impact on runoff. After the simulation in four vegetation scenarios, we concluded that the runoff regulation ability of grassland is greater than that of bare land. The grassland landscape is essential since it reduced the flood peak and conserved the soil and water.  相似文献   
196.
197.
198.
Accepting the concept of standardization introduced by the standardized precipitation index, similar methodologies have been developed to construct some other standardized drought indices such as the standardized precipitation evapotranspiration index (SPEI). In this study, the authors provided deep insight into the SPEI and recognized potential deficiencies/limitations in relating to the climatic water balance it used. By coupling another well‐known Palmer drought severity index (PDSI), we proposed a new standardized Palmer drought index (SPDI) through a moisture departure probabilistic approach, which allows multi‐scalar calculation for accurate temporal and spatial comparison of the hydro‐meteorological conditions of different locations. Using datasets of monthly precipitation, temperature and soil available water capacity, the moisture deficit/surplus was calculated at multiple temporal scales, and a couple of techniques were adopted to adjust corresponding time series to a generalized extreme value distribution out of several candidates. Results of the historical records (1900–2012) for diverse climates by multiple indices showed that the SPDI was highly consistent and correlated with the SPEI and self‐calibrated PDSI at most analysed time scales. Furthermore, a simple experiment of hypothetical temperature and/or precipitation change scenarios also verified the effectiveness of this newly derived SPDI in response to climate change impacts. Being more robust and preferable in spatial consistency and comparability as well as combining the simplicity of calculation with sufficient accounting of the physical nature of water supply and demand relating to droughts, the SPDI is promising to serve as a competent reference and an alternative for drought assessment and monitoring. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
199.
The south‐west region of the Goulburn–Broken catchment in the south‐eastern Murray–Darling Basin in Australia faces a range of natural resource challenges. A balanced strategy is required to achieve the contrasting objectives of remediation of land salinization and reducing salt export, while maintaining water supply security to satisfy human consumption and support ecosystems. This study linked the Catchment Analysis Tool (CAT), comprising a suite of farming system models, to the catchment‐scale CATNode hydrological model to investigate the effects of land use change and climate variation on catchment streamflow and salt export. The modelling explored and contrasted the impacts of a series of different revegetation and climate scenarios. The results indicated that targeted revegetation to only satisfy biodiversity outcomes within a catchment is unlikely to have much greater impact on streamflow and salt load in comparison with simple random plantings. Additionally, the results also indicated that revegetation to achieve salt export reduction can effectively reduce salt export while having a disproportionately smaller affect on streamflows. Furthermore, streamflow declines can be minimized by targeting revegetation activities without significantly altering salt export. The study also found that climate change scenarios will have an equal if not more significant impact on these issues over the next 70 years. Uncertainty in CATNode streamflow predictions was investigated because of the effect of parameter uncertainty. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号