首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   7篇
  国内免费   1篇
测绘学   1篇
大气科学   6篇
地球物理   21篇
地质学   11篇
海洋学   8篇
天文学   5篇
自然地理   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2014年   2篇
  2013年   4篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2007年   6篇
  2006年   3篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1981年   1篇
排序方式: 共有53条查询结果,搜索用时 125 毫秒
21.
Snow is an important component of the Earth's climate system and is particularly vulnerable to global warming. It has been suggested that warmer temperatures may cause significant declines in snow water content and snow cover duration. In this study, snowfall and snowmelt were projected by means of a regional climate model that was coupled to a physically based snow model over Shasta Dam watershed to assess changes in snow water content and snow cover duration during the 21st century. This physically based snow model requires both physical data and future climate projections. These physical data include topography, soils, vegetation, and land use/land cover, which were collected from associated organizations. The future climate projections were dynamically downscaled by means of the regional climate model under 4 emission scenarios simulated by 2 general circulation models (fifth‐generation of the ECHAM general circulation model and the third‐generation atmospheric general circulation model). The downscaled future projections were bias corrected before projecting snowfall and snowmelt processes over Shasta Dam watershed during 2010–2099. This study's results agree with those of previous studies that projected snow water equivalent is decreasing by 50–80% whereas the fraction of precipitation falling as snowfall is decreasing by 15% to 20%. The obtained projection results show that future snow water content will change in both time and space. Furthermore, the results confirm that physical data such as topography, land cover, and atmospheric–hydrologic data are instrumental in the studies on the impact of climate change on the water resources of a region.  相似文献   
22.
The infrared reflectivities of crystalline forsterite (Mg2SiO4) were measured for the temperature range 295–50 K for each crystal axis, between wavenumber 5000 and 100 cm−1. The reflection spectra show clear dependence of temperature; most of the bands become more intense, sharper and their peak positions shift to higher wavenumber with decreasing temperature. Reflection spectra were fitted with dispersion formula of damped oscillator model of the dielectric constants and the oscillator parameters in the model were derived. The absorption spectra of forsterite particle are calculated with the derived dielectric constants to show that the forsterite features are good thermal indicator for cold temperature range below 295 K.  相似文献   
23.
We determined the mineralogical and petrological characteristics of ultramafic rocks dredged from two oceanic core complexes: the Mado Megamullion and 23°30′N non-transform offset massif, which are located within the Shikoku back-arc basin in the Philippine Sea. The ultramafic rocks are strongly serpentinized, but can be classified as harzburgite/lherzolite or dunite, based on relict primary minerals and their pseudomorphs. Strongly elongated pyroxene porphyroclasts with undulatory extinction indicate high-temperature (≥700 °C) strain localization on a detachment fault within the upper mantle at depths below the brittle–viscous transition. During exhumation, the peridotites underwent impregnation by magmatic or hydrothermal fluids, lizardite/chrysotile serpentinization at ≤300 °C, antigorite crystallization, and silica metasomatism that formed talc. These features indicate that the detachment fault zones formed a fluid pathway and facilitated a range of fluid–peridotite interactions.  相似文献   
24.
25.
Giant Megamullion in the Parece Vela Backarc Basin   总被引:1,自引:0,他引:1  
We present results of high-resolution bathymetric studies of the extinct intermediate-spreading Parece Vela Basin in the northwestern Pacific, where we have identified an extremely large mullion structure, here termed a giant megamullion. We find that the giant megamullion is nearly an order of magnitude larger than the similar structures in the slow-spreading Mid-Atlantic Ridge (`megamullions'). The giant megamullion has slightly elevated mantle Bouguer anomaly, and yields serpentinized peridotites and gabbros, suggesting that they are exposing oceanic crust and upper mantle. An off-axis rugged `chaotic terrain' was also identified in the Parece Vela Basin. The terrain consists of isolated and elevated blocks capped by corrugated axis-normal lineations, and associated deeps. We thus interpret it as analogues to the Mid-Atlantic Ridge megamullions. We propose that amagmatic tectonics producing the giant megamullion and the chaotic terrain occupied a significant part in crustal construction in the Parece Vela Basin evolution.  相似文献   
26.
Climate change due to global warming is a public concern in Central Asia. Because of specific orography and climate conditions, the republic of Tajikistan is considered as the main glacial center of Central Asia. In this study, regional climate change impacts in the two large basins of Tajikistan, Pyanj and Vaksh River basins located in the upstream sector of the Amu Darya River basin are analysed. A statistical regression method with model output statistics corrections using the ground observation data, Willmott archived dataset and GSMaP satellite driven dataset, was developed and applied to the basins to downscale the Global Climate Model Projections at a 0.1‐degree grid and to assess the regional climate change impacts at subbasin scale. It was found that snow and glacier melting are of fundamental importance for the state of the future water resources and flooding at the target basins since the air temperature had a clearly increasing trend toward the future. It was also found that the snowfall will decrease, but the rainfall will increase because of the gradual increase in the air temperature. Such changes may result in an increase in flash floods during the winter and the early spring, and in significant changes in the hydrological regime during a year in the future. Furthermore, the risks of floods in the target basins may be slightly increasing because of the increase in the frequencies and magnitudes of high daily precipitation and the increase in the rapid snowmelt with high air temperatures toward the future. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
27.
It is well known that snow plays an important role in land surface energy balance; however, modelling the subgrid variability of snow is still a challenge in large‐scale hydrological and land surface models. High‐resolution snow depth data and statistical methods can reveal some characteristics of the subgrid variability of snow depth, which can be useful in developing models for representing such subgrid variability. In this study, snow depth was measured by airborne Lidar at 0.5‐m resolution over two mountainous areas in south‐western Wyoming, Snowy Range and Laramie Range. To characterize subgrid snow depth spatial distribution, measured snow depth data of these two areas were meshed into 284 grids of 1‐km × 1‐km. Also, nine representative grids of 1‐km × 1‐km were selected for detailed analyses on the geostatistical structure and probability density function of snow depth. It was verified that land cover is one of the important factors controlling spatial variability of snow depth at the 1‐km scale. Probability density functions of snow depth tend to be Gaussian distributions in the forest areas. However, they are eventually skewed as non‐Gaussian distribution, largely due to the no‐snow areas effect, mainly caused by snow redistribution and snow melt. Our findings show the characteristics of subgrid variability of snow depth and clarify the potential factors that need to be considered in modelling subgrid variability of snow depth.  相似文献   
28.
Gabbroic rocks and amphibolites were collected from the KR03‐01‐D10 dredge site located on the West Arm Rise of the Godzilla Megamullion, close to the Parece Vela Rift which appears to correspond to the termination area of a detachment fault, the Philippine Sea. The gabbroic rocks and amphibolites reveal the occurrence of a high hydrothermal activity in the lower crust close to a paleo‐ridge. In the gabbroic rocks, plagioclase compositions of both porphyroclasts and matrix were transformed into sodium‐rich compositions close to albite. Amphiboles are of secondary rather than igneous origin based on their microstructural occurrences. In the amphibolites, anorthite contents of porphyroclasts and matrix plagioclase are relatively lower than those of the gabbroic rocks, whereas the chemical compositions of amphibole within the amphibolites are similar to those of amphibole within the gabbroic rocks. Amphibolites represent the product of retrograde metamorphism associated with hydrothermal alteration of the gabbroic body by the reaction: clinopyroxene + calcic plagioclase + fluid → amphibole + sodic plagioclase. The estimated temperatures of the amphibolites derived from the amphibole thermobarometer and the gabbroic rocks derived from the hornblende–plagioclase geothermometer show ~700–950°C and 650–840°C, respectively. The hydrothermal alteration recorded in the gabbroic rocks possibly occurred under high‐T conditions; the rocks were then metamorphosed to the amphibolites during a retrogressive stage. Our study indicates that amphibolitization took place with various degrees of deformation. It may imply that the hydrothermal activity increased as the Godzilla Megamullion developed as an oceanic core complex in the paleo‐ridge.  相似文献   
29.
Shock loading experiments on single crystal ilmenite (FeTiO3) are carried out up to peak pressures of 80 GPa using a newly built two-stage light gas gun. Shock effects are investigated by means of X-ray precission technique and Mössbauer spectroscopy. Shock effects are largely controlled by the anisotropic nature of the ilmenite structure. Considerable deformations are observed even in a pressure level of 30 GPa in the shocked crystal when the shock propagation direction is parallel to the c axis, whereas little effects are seen up to 55 GPa when the crystal is shocked parallel to the c plane (cleavage plane). The greatest deformation is introduced in the planes containing the c axis, while less remarkable effects are seen in the plane perpendicular to the c axis. Residual effects are favorably compared with the compression anomalies found in the Hugoniot measurements by King and Ahrens (1976). Mössbauer measurements also reveal that a fraction of highly disturbed regions increases with increasing shock loading pressure. These observations are explained in terms of current heterogeneous yielding model of brittle substances under shock loading, where internal fragmentation is preferentially formed so as to give c-platelet domains that are mutually misoriented with each other.  相似文献   
30.
The turbulent structure of the lake breeze penetration and subsequent development of the thermal internal boundary layer (TIBL) was observed using a kytoon-mounted ultrasonic anemometer-thermometer. The lake breeze penetrated with an upward rolling motion associated with the upward flow near the lake breeze front. After the lake breeze front passed, the behaviors of the velocity and temperature at the top of the lake breeze layer were similar to those found in convective boundary layers (CBL). Comparing gq/*, u /w * and w /w * between the present observation of TIBL development after the passage of the lake breeze front and CBL data from the literature, the /* values showed reasonable agreement; however, u /w * and w /W* had smaller values in the TIBL than in the CBL at higher altitudes. This is due to the differences in the mean velocity profiles. While the CBL has a uniform velocity profile, the TIBL has a peak at lower elevation due to the lake breeze penetration; the velocity then decreases with height.Present address: The Institute of Behavioral Science, 1-35-7 Yoyogi, Tokyo 151, Japan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号