首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
  国内免费   3篇
大气科学   11篇
地球物理   7篇
地质学   7篇
海洋学   1篇
天文学   1篇
  2018年   3篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2000年   1篇
  1999年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
11.
12.
This study describes surface cyclone activity associated with the interannual variability in summer precipitation in northern Eurasia and how that activity may be connected to other climate signals. An east–west seesaw oscillation of precipitation across Siberia is the primary mode of interannual variability in the summer hydrological cycle over northern Eurasia. This variation occurs at sub-decadal timescales of about 6–8 years. The spatial characteristics of cyclone frequency and cyclone tracks at the two poles in variability [eastern Siberia (ES)-wet–western Siberia (WS)-dry and WS-wet–ES-dry] were examined, and temporal variability in regional cyclone frequency was compared to basin-scale precipitation variability. The analysis period was from 1973 to 2002, when the precipitation variability signal was predominant.Cyclone behavior suggested that the regions of enhanced (reduced) cyclone activity coincided with regions of increased (decreased) precipitation in each phase of the oscillation. Such behavior reflects the zonal displacement of the track of frequent storm activity that accompanies the changes in precipitation. Comparisons of the temporal characteristics confirmed the importance of regional cyclone frequency on precipitation variability in both eastern and western Siberia. Low-frequency changes in regional cyclone activity may produce the precipitation oscillation. We used various climate signals to explore connections between regional precipitation and cyclone activity in Siberia. Results suggest that the North Atlantic Oscillation (NAO) from the preceding winter is significantly and negatively correlated with summer surface cyclone frequency and precipitation over western Siberia. Enhanced (reduced) summer cyclone activity and precipitation in western Siberia follows low- (high-) winter NAO. However, the physical mechanisms linking summer cyclone activity and precipitation over western Siberia with the preceding climate conditions associated with the winter NAO remain unclear.  相似文献   
13.
Detailed spatiotemporal structures for the submonthly-scale (7–25 days) intraseasonal oscillation (ISO) in summer monsoon rainfall and atmospheric circulation were investigated in South Asia using high-quality rainfall and reanalysis datasets. The Meghalaya–Bangladesh–coast of the western Myanmar (MBWM) region is the predominant area of submonthly-scale ISO in the Asian monsoon regions. The distinct rainfall ISO is caused by a remarkable alternation of low-level zonal wind between westerly and easterly flows around the Gangetic Plain on the same timescales. In the active ISO phase of the MBWM, a strong low-level westerly/southwesterly flows around the plain and a center of cyclonic vorticity appears over Bangladesh. Hence, a local southerly flows toward the Meghalaya Plateau and there is strong southwesterly flow towards the coast along southeastern Bangladesh and western Myanmar, resulting in an increase in orographic rainfall. Rainfall also increases over the lowland area of the MBWM due to the low-level convergence in the boundary layer under the strong cyclonic circulation. The submonthly-scale low-level wind fluctuation around the MBWM is caused by a westward moving n = 1 equatorial Rossby (ER) wave. When the anticyclonic (cyclonic) anomaly related to the ER wave approaches the Bay of Bengal from the western Pacific, humid westerly/southwesterly (easterly/southeasterly) flows enhance around the Gangetic Plain on the northern fringe of the anticyclone (cyclone) and in turn promote (reduce) rainfall in the MBWM. Simultaneously, robust circulation signals are observed over the mid-latitudes. In the active phase, cyclonic anomalies appear over and around the TP, having barotropic vertical structure and also contributing to the enhancement of low-level westerly flow around the Gangetic Plain. In the upper troposphere, an anticyclonic anomaly is also observed upstream of the cyclonic anomaly over the TP, having wavetrain structure. The mid-latitude circulation around the TP likely helps to induce the distinct ISO there in conjunction with the equatorial waves. Thus, the distinct ISO in the MBWM is strongly enhanced locally (~500 km) by the terrain features, although the atmospheric circulation causing the ISO has a horizontal scale of ~6,000 km or more, extending across the whole Asian monsoon system from the tropics to mid-latitudes.  相似文献   
14.
A series of 60-year numerical experiments starting from 1851 was conducted using a global climate model coupled with an aerosol-cloud-radiation model to investigate the response of the Asian summer monsoon to variations in the secondary organic aerosol (SOA) flux induced by two different estimations of biogenic volatile organic compound (BVOC) emissions. One estimation was obtained from a pre-existing archive and the other was generated by a next-generation model (the Model of Emissions of Gases and Aerosols from Nature, MEGAN). The use of MEGAN resulted in an overall increase of the SOA production through a higher rate of gasto-particle conversion of BVOCs. Consequently, the atmospheric loading of organic carbon (OC) increased due to the contribution of SOA to OC aerosol. The increase of atmospheric OC aerosols was prominent in particular in the Indian subcontinent and Indochina Peninsula (IP) during the pre- and early-monsoon periods because the terrestrial biosphere is the major source of BVOC emissions and the atmospheric aerosol concentration diminishes rapidly with the arrival of monsoon rainfall. As the number of atmospheric OC particles increased, the number concentrations of cloud droplets increased, but their size decreased. These changes represent a combination of aerosol-cloud interactions that were favorable to rainfall suppression. However, the modeled precipitation was slightly enhanced in May over the oceans that surround the Indian subcontinent and IP. Further analysis revealed that a compensating updraft in the surrounding oceans was induced by the thermally-driven downdraft in the IP, which was a result of surface cooling associated with direct OC aerosol radiative forcing, and was able to surpass the aerosolcloud interactions. The co-existence of oceanic ascending motion with the maximum convective available potential energy was also found to be crucial for rainfall formation. Although the model produced statistically significant rainfall changes with locally organized patterns, the suggested pathways should be considered guardedly because in the simulation results, 1) the BVOC-induced aerosol direct effect was marginal; 2) cloud-aerosol interactions were modeldependent; and 3) Asian summer monsoons were biased to a nonnegligible extent.  相似文献   
15.
We examined rainfall anomalies associated with the El Niño–Southern Oscillation (ENSO) in northern Sarawak, Malaysia, using the oxygen isotopic composition of rainfall. Two precipitation‐sampling campaigns were conducted for isotope analysis: (a) at the Lambir Hill National Park (4.2° N, 114.0° E) from July 2004 to October 2006 and (b) at the Gunung Mulu National Park (3.9° N, 114.8° E) from January 2006 to July 2008. The records from these campaigns were merged with a previously published rainfall isotope dataset from Gunung Mulu site to create a 7‐year‐long record of the oxygen isotopic composition of Sarawak rainfall. The record exhibits clear intraseasonal variations (ISVs) with periods ranging from 10 to 70 days. The ISVs of 10‐ to 90‐day band‐pass filtered oxygen isotopic composition are linked to the synoptic‐scale precipitation anomalies over the southern South China Sea (SCS). The lead–lag correlation map of precipitation with the filtered oxygen isotope anomalies shows that an anomalous wet condition responsible for the decrease in oxygen isotopic composition appears over the SCS in association with the passage of north‐eastward propagation of the boreal summer intraseasonal oscillation (BSISO) in the summer monsoon season. The anomalous wet condition in spring is connected with eastward‐propagating Madden–Julian oscillation (MJO), whereas the sustained wet condition in winter is responsible for the occurrence of the Borneo vortex (BV) over the SCS. ENSO modulates the frequency of these synoptic conditions on a seasonal and longer time scale, showing a strong correlation between the seasonal isotopic anomalies and the Southern Oscillation index. We therefore discern, from the significant correlation between the isotope anomalies and area‐averaged Sarawak rainfall anomalies (R = ?0.65, p < 0.01), that ENSO‐related precipitation anomalies are linked to the seasonal modulation of the BSISO and MJO activity and BV genesis.  相似文献   
16.
The bulging observed on the wall of a ground supported cylindrical storage tank, located at the Chiba Experimental Station of the University of Tokyo, is investigated. This damage is correlated with a ground motion recording obtained very near the tank base during a moderately strong earthquake that occurred on September 25, 1980 not far from the Chiba Experimental Station. From this correlation the importance of the horizontal excitation in amplitude and direction is clearly established. In addition, good agreement can be seen between the predicted tank wall earthquake performance, derived by an empirical approach proposed by the first author, and the shell deformation observed at the Chiba Experimental Station.  相似文献   
17.
Data on the N and C isotopic composition are presented for the Lower Triassic claystones of the Abrek section of southern Primorye (Far East). The results showed five N isotopic intervals and several negative C isotopic excursions of the Induan–lower Olenekian stages of the Abrek section.  相似文献   
18.
Light absorbing particles(LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance(a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice(LAPSI) has been identified as one of major forcings affecting climate change, e.g.in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this review paper, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the mass concentrations, albedo reduction, radiative forcing, and climatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.  相似文献   
19.
This paper evaluates the performance of eight state-of-art IPCC-AR4 coupled atmosphere-ocean general circulation models in their representation of regional characteristics of atmospheric water balance over South Asia. The results presented here are the regional climate change scenarios of atmospheric water balance components, precipitation, moisture convergence and evaporation (P, C and E) up to the end of the twenty-second century based on IPCC AR4 modelling experiments conducted for (A1B) future greenhouse gas emission scenario. The AOGCMs, despite their relatively coarse resolution, have shown a reasonable skill in depicting the hydrological cycle over the South Asian region. However, considerable biases do exist with reference to the observed atmospheric water balance and also inter-model differences. The monsoon rainfall and atmospheric water balance changes under A1B scenario are discussed in detail. Spatial patterns of rainfall change projections indicate maximum increase over northwest India in most of the models, but changes in the atmospheric water balance are generally widespread over South Asia. While the scenarios presented in this study are indicative of the expected range of rainfall and water balance changes, it must be noted that the quantitative estimates still have large uncertainties associated with them.  相似文献   
20.
春季亚洲地面湿度异常对月、季气候影响的模拟研究   总被引:8,自引:0,他引:8  
通过大气环流模式试验,研究了春季亚洲中纬带地面湿度异常对其后4个月月平均气候参数的影响.结果发现:正的地面湿度异常对其后气候参数的影响在第1个月最弱,第3个月最强;它导致欧亚中高纬带在第2~4个月对流层内的高度和温度都降低,低值系统发展,副热带高压亦发展,中纬度西风急流相应增强;同时北美东岸有明显的遥相关响应.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号