首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   4篇
  国内免费   2篇
测绘学   1篇
大气科学   2篇
地球物理   34篇
地质学   15篇
海洋学   15篇
天文学   15篇
综合类   4篇
自然地理   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   5篇
  2016年   6篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   6篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2000年   2篇
  1998年   5篇
  1994年   5篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1970年   1篇
排序方式: 共有87条查询结果,搜索用时 31 毫秒
71.
Supported by the recent advancement of experimental test methods, numerical simulation, and high‐speed communication networks, it is possible to distribute geographically the testing of structural systems using hybrid experimental–computational simulation. One of the barriers for this advanced testing is the lack of flexible software for hybrid simulation using heterogeneous experimental equipment. To address this need, an object‐oriented software framework is designed, developed, implemented, and demonstrated for distributed experimental–computational simulation of structural systems. The software computes the imposed displacements for a range of test methods and co‐ordinates the control of local and distributed configurations of experimental equipment. The object‐oriented design of the software promotes the sharing of modules for experimental equipment, test set‐ups, simulation models, and test methods. The communication model for distributed hybrid testing is similar to that used for parallel computing to solve structural simulation problems. As a demonstration, a distributed pseudodynamic test was conducted using a client–server approach, in which the server program controlled the test equipment in Japan and the client program performed the computational simulation in the United States. The distributed hybrid simulation showed that the software framework is flexible and reliable. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
72.
在海洋地区进行高质量的长期地震观测是全球地震观测的一个重要组成部分,DSDP/ODP是唯一能够钻穿软的沉积物、在坚硬的岩石里安置地震传感器这一目标的科学计划。介绍了ODP航次在井孔中设立地震台站、并获得一些有趣的结果的成功例子。ODP在日本外海布置了两个井中地震台站,与陆上台站一起来观测板块边界的活动性。此外,还介绍了西太平洋井中宽带台站、海上地震信号和噪音等问题。  相似文献   
73.
A seismic refraction–reflection experiment using ocean bottom seismometers and a tuned airgun array was conducted around the Solomon Island Arc to investigate the fate of an oceanic plateau adjacent to a subduction zone. Here, the Ontong Java Plateau is converging from north with the Solomon Island Arc as part of the Pacific Plate. According to our two-dimensional P-wave velocity structure modeling, the thickness of the Ontong Java Plateau is about 33 km including a thick (15 km) high-velocity layer (7.2 km/s). The thick crust of the Ontong Java Plateau still persists below the Malaita Accreted Province. We interpreted that the shallow part of the Ontong Java Plateau is accreted in front of the Solomon Island Arc as the Malaita Accreted Province and the North Solomon Trench are not a subduction zone but a deformation front of accreted materials. The subduction of the India–Australia Plate from the south at the San Cristobal Trench is confirmed to a depth of about 20 km below sea level. Seismicity around our survey area shows shallow (about 50 km) hypocenters from the San Cristobal Trench and deep (about 200 km) hypocenters from the other side of the Solomon Island Arc. No earthquakes occurred around the North Solomon Trench. The deep seismicity and our velocity model suggest that the lower part of the Ontong Java Plateau is subducting. After the oceanic plateau closes in on the arc, the upper part of the oceanic plateau is accreted with the arc and the lower part is subducted below the arc. The estimation of crustal bulk composition from the velocity model indicates that the upper portion and the total of the Solomon Island Arc are SiO2 58% and 53%, respectively, which is almost same as that of the Izu–Bonin Arc. This means that the Solomon Island Arc can be a contributor to growing continental crust. The bulk composition of the Ontong Java Plateau is SiO2 49–50%, which is meaningfully lower than those of continents. The accreted province in front of the arc is growing with the convergence of the two plates, and this accretion of the upper part of the oceanic plateau may be another process of crustal growth, although the proportion of such contribution is not clear.  相似文献   
74.
INTRODUCTIONThesignalproaningschemeofmostpnsentsonarsyStasuChaseChosounder,fishfinder,etc.,deteCtsthesignaIsaanrdingt0theamPlitudethasholdafterthefilter.However,inacomplicatalandfrequenhychangingunderotCfacousticalchanne,thesta-bilityandreiabilityofthiskindofsonarsySteIndroeshamlyasanysySthenoisewhleadt0anindedion.AmplitudefaderesultingfromstrongsignalfluCtuationcauseslossofdata.InsomesyStetnS,suchasndnelocatingsonar,highrangingamCyisneded,soasinglededionschernecann0tadapttoit.Resul…  相似文献   
75.
Measurements of perturbations in the atmospheric potential gradient around volcanic plumes at multiple (from two to five) sites, and measurements of the charge-mass ratio of ash particles falling from volcanic plumes, were carried out at Sakurajima Volcano, Japan. Results from 28 and 29 October 1995, show that the nature of the perturbations depends on the intensity of plume activity. Although plume activity was vigorous on 28 October, negative perturbations were predominant. As plume activity peaked, the magnitude of negative perturbations decreased just below the plume and increased at an off-axis site. During the peak period, positively charged ash particles fell out from the plume. This suggests that the active plume dominantly contained negatively charged materials, and that positively and negatively charged materials were added to the lower and upper parts of the plume, respectively, during the peak period. On the other hand, as plume activity became less vigorous on 29 October, the perturbations were characterized by a positive anomaly followed by a negative anomaly. Because wind velocity increased with altitude that day, we infer that positive and negative charges were distributed in the upper and lower parts of the plume, respectively. The differences in perturbations observed on 28 and 29 October suggest that volcanic plumes are generally composed of three parts: an upper part with positively charged gas and aerosol, a middle part with negatively charged fine ash particles, and a lower part with positively charged coarse ash particles. The compilation of present and previous results from Sakurajima and other volcanoes indicates that the effect of the negative charge in the middle part was predominant in most cases, although positive perturbations caused by the upper part were observed around some weak plumes. The effect of positively charged particles in the lower part was observable only when plume activity was sufficiently strong because positively charged coarse particles tended to fall out near the vent.  相似文献   
76.
Abstract Upon studying the well preserved skulls referred to Paleoparadoxia tabatai from Japan, the short and low skull of the Yanagawa specimen requires an explanation. Six cranial and dental characters lead us to suggest that the Yanagawa individual is a female while the Izumi, Ohnohara, and Itsukaichi skulls are male. The important characters in the Yanagawa skull are its shortness and shallow depth, less pronounced sagittal and nuchal crests, smaller zygoma, and the small dentition with especially poorly erupted canines, most of which are indicative of weak masticatory musculature.  相似文献   
77.
78.
Abstract The Ryoke Belt is one of the important terranes in the South‐west Japan Arc (SJA). It consists mainly of late Cretaceous granitoid rocks, meta‐sedimentary rocks (Jurassic accretionary complexes) and mafic rocks (gabbros, metadiabases; late Permian–early Jurassic). Initial ?Sr (+ 25– + 59) and ?Nd (? 2.1–?5.9) values of the metadiabases cannot be explained by crustal contamination but reflect the values of the source material. These values coincide with those of island arc basalt (IAB), active continental margin basalt (ACMB) and continental flood basalt (CFB). Spiderdiagrams and trace element chemistries of the metadiabases have CFB‐signature, rather than those of either IAB or ACMB. The Sr–Nd isotope data, trace element and rare earth element chemistries of the metadiabases indicate that they result from partial melting of continental‐type lithospheric mantle. Mafic granulite xenoliths in middle Miocene volcanic rocks distributed throughout the Ryoke Belt were probably derived from relatively deep crust. Their geochemical and Sr–Nd isotopic characteristics are similar to the metadiabases. This suggests that rocks, equivalent geochemically to the metadiabases, must be widely distributed at relatively deep crustal levels beneath a part of the Ryoke Belt. The geochemical and isotopic features of the metadiabases and mafic granulites from the Ryoke Belt are quite different from those of mafic rocks from other terranes in the SJA. These results imply that the Ryoke mafic rocks (metadiabase, mafic granulite) were not transported from other terranes by crustal movement but formed in situ. Sr–Nd isotopic features of late Cretaceous granitoid rocks occurring in the western part of the Japanese Islands are coincident with those of the Ryoke mafic rocks. Such an isotopic relation between these two rocks suggests that a continental‐type lithosphere is widely represented beneath the western part of the Japanese Islands.  相似文献   
79.
Observations acquired from three-wavelength (427.8, 557.7 and 630.0 nm) all-sky imagers (ASIs) at Yellow River Station (YRS) in Ny-Ålesund, Svalbard, are used to examine the synoptic distribution of dayside aurora. The results demonstrate that the maximum emission regions (MERs) at each wavelength are all located in the postnoon sector, but have rather different magnetic local time (MLT) distributions from each other. The so-called 15 MLT “hot spot” is the overlapping region of the MERs at three wavelengths, and the prenoon “warm spot” is characterized uniquely by an increase of emissions at the 557.7 nm wavelength. The detailed dayside auroral spectra and morphology as a function of MLT are discussed.  相似文献   
80.
The 1st crater of Naka-dake, Aso volcano, is one of the most active craters in Japan, and known to have a characteristic cycle of activity that consists of the formation of a crater lake, drying-up of the lake water, and finally a Strombolian-type eruption. Recent observations indicate an increase in eruptive activity including a decrease in the level of the lake water, mud eruptions, and red hot glows on the crater wall. Temporal variations in the geomagnetic field observed around the craters of Naka-dake also indicate that thermal demagnetization of the subsurface rocks has been occurring in shallow subsurface areas around the 1st crater. Volcanic explosions act to release the energy transferred from magma or volcanic fluids. Measurement of the subsurface electrical resistivity is a promising method in investigating the shallow structure of the volcanic edifices, where energy from various sources accumulates, and in investigating the behaviors of magma and volcanic fluids. We carried out audio-frequency magnetotelluric surveys around the craters of Naka-dake in 2004 and 2005 to determine the detailed electrical structure down to a depth of around 1 km. The main objective of this study is to identify the specific subsurface structure that acts to store energy as a preparation zone for volcanic eruption. Two-dimensional inversions were applied to four profiles across the craters, revealing a strongly conductive zone at several hundred meters depth beneath the 1st crater and surrounding area. In contrast, we found no such remarkable conductor at shallow depths beneath the 4th crater, which has been inactive for 70 years, finding instead a relatively resistive body. The distribution of the rotational invariant of the magnetotelluric impedance tensor is consistent with the inversion results. This unusual shallow structure probably reflects the existence of a supply path of high-temperature volcanic gases to the crater bottom. We propose that the upper part of the conductor identified beneath the 1st crater is mainly composed of hydrothermally altered zone that acts both as a cap to upwelling fluids supplied from deep-level magma and as a floor to infiltrating fluid from the crater lake. The relatively resistive body found beneath the 4th crater represents consolidated magma. These results suggest that the shallow conductor beneath the active crater is closely related to a component of the mechanism that controls volcanic activity within Naka-dake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号