首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   18篇
  国内免费   9篇
测绘学   1篇
大气科学   14篇
地球物理   78篇
地质学   51篇
海洋学   122篇
天文学   60篇
综合类   3篇
自然地理   10篇
  2021年   3篇
  2020年   2篇
  2018年   8篇
  2017年   10篇
  2016年   9篇
  2015年   10篇
  2014年   7篇
  2013年   8篇
  2012年   5篇
  2011年   10篇
  2010年   14篇
  2009年   14篇
  2008年   12篇
  2007年   17篇
  2006年   10篇
  2005年   21篇
  2004年   14篇
  2003年   19篇
  2002年   10篇
  2001年   11篇
  2000年   9篇
  1999年   10篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   7篇
  1993年   9篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1987年   8篇
  1986年   9篇
  1985年   3篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   4篇
  1977年   6篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
  1972年   1篇
  1971年   2篇
  1968年   2篇
  1958年   1篇
排序方式: 共有339条查询结果,搜索用时 15 毫秒
131.
The Raman spectra of carbonaceous material (CM) from 19 metasediment samples collected from six widely separated areas of Southwest Japan and metamorphosed at temperatures from 165 to 655°C show systematic changes with metamorphic temperature that can be classified into four types: low‐grade CM (c. 150–280°C), medium‐grade CM (c. 280–400°C), high‐grade CM (c. 400–650°C), and well‐crystallized graphite (> c. 650°C). The Raman spectra of low‐grade CM exhibit features typical of amorphous carbon, in which several disordered bands (D‐band) appear in the first‐order region. In the Raman spectra of medium‐grade CM, the graphite band (G‐band) can be recognized and several abrupt changes occur in the trends for several band parameters. The observed changes indicate that CM starts to transform from amorphous carbon to crystallized graphite at around 280°C, and this transformation continues until 400°C. The G‐band becomes the most prominent peak at high‐grade CM suggesting that the CM structure is close to that of well‐crystallized graphite. In the highest temperature sample of 655°C, the Raman spectra of CM show a strong G‐band with almost no recognizable D‐band, implying the CM grain is well‐crystallized graphite. In the Raman spectra of low‐ to medium‐grade CM, comparisons of several band parameters with the known metamorphic temperature show inverse correlations between metamorphic temperature and the full width at half maximum (FWHM) of the D1‐ and D2‐bands. These correlations are calibrated as new Raman CM geothermometers, applicable in the range of c. 150–400°C. Details of the methodology for peak decomposition of Raman spectra from the low to medium temperature range are also discussed with the aim of establishing a robust and user‐friendly geothermometer.  相似文献   
132.
The mass balance of the Xiao (Lesser) Dongkemadi Glacier located in the Tanggula Mountains, of the central Qinghai‐Tibetan Plateau has been monitored since 1989. The results show that the mass balance of the glacier has recently shown a deficit trend, and that the glacial terminus was also retreating. Positive mass balance of the glacier was dominant during the period 1989–1993, and the accumulated mass balance reached 970 mm. However, negative mass balance of the glacier has occurred since 1994, except for the large positive mass balance year 1997. The mass balance was ? 701 mm in 1998, an extremely negative glacier mass balance year. The equilibrium line altitude showed a significant increasing trend. The mass balance of the glacier has changed from a significantly positive mass balance to a strongly negative mass balance since 1994. Meteorological data suggest that the rapid decrease in the mass balance is related to summer season warming. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
133.
Isolated-type tremors having two events with different dominant frequencies are characteristic seismological phenomena observed during the fumarolic activity stage at Aso Volcano. These isolated tremors are called hybrid tremors (HBT) and comprise two parts: an initial part named the “HF-part” with a dominant frequency in the high-frequency region (approximately 10 Hz) and the following part named the “LF-part” with a dominant frequency in the low-frequency region (approximately 2 Hz). The LF-part is observed after the HF-part, and the HBT is accompanied by a long-period tremor (LPT). Hypocenters and source parameters are estimated using seismograms recorded at 64 stations around Nakadake crater. The amplitude distributions of all HF-parts have almost similar trends. Similarly, the amplitude distributions of all LF-parts have almost similar trends. However, the amplitude distributions of HF- and LF-parts are not similar. From these results, we proposed that the hypocenters and source parameters of HF- and LF-parts are not common, but each of them have common hypocenters and source parameters. The hypocenter region of HF-parts was estimated to be just beneath the fumarole region south of the 1st crater: the volume fluctuation is the major source factor. The hypocenter region of LF-parts is estimated to be at a depth of approximately 300 m beneath the first crater: the strike–slip component is the major source parameter. The hypocentral depth of LF-parts is located at the upper end of the crack estimated to be the source of the LPTs. The LPTs and HBTs are observed almost simultaneously. We consider that volcanic fluid is involved in the source mechanisms of both HBT and LPT.  相似文献   
134.
We used time-series sediment trap data for four major components, organic matter and ballast minerals (CaCO3, opal, and lithogenic matter) from 150, 540, and 1000 m in the western subarctic Pacific (WSAP), where opal is the predominant mineral in sinking particles, to develop four simple models for settling particles, including the “ballast model”. The ballast model is based on the concept that most of the organic matter “rain” in the deep sea is carried by the minerals. These four models are designed to simultaneously reproduce the flux of each major component of settling particles at 540 and 1000 m by using the data for each component at 150 m as initial values. Among the four models, the ballast model, which considers the sinking velocity increase with depth, was identified as the best using the Akaike information criterion as a measure of the model fit to data. This model successfully reproduced the flux of organic matter at 540 and 1000 m, indicating that the ballast model concept works well in the shallow zone of the WSAP on a seasonal timescale. This also suggests that ballast minerals not only physically protect the organic matter from degradation during the settling process but also enhance the sinking velocity and reduce the degree of decomposition.  相似文献   
135.
We report on the isotopic composition of dissolved inorganic carbon (DIC) in pore-water samples recovered by gravity coring from near-bottom sediments at gas hydrate-bearing mud volcanoes/gas flares (Malenky, Peschanka, Peschanka 2, Goloustnoe, and Irkutsk) in the Southern Basin of Lake Baikal. The δ13C values of DIC become heavier with increasing subbottom depth, and vary between ?9.5 and +21.4‰ PDB. Enrichment of DIC in 13C indicates active methane generation in anaerobic environments near the lake bottom. These data confirm our previous assumption that crystallization of carbonates (siderites) in subsurface sediments is a result of methane generation. Types of methanogenesis (microbial methyl-type fermentation versus CO2-reduction) were revealed by determining the offset of δ13C between dissolved CH4 and CO2, and also by using δ13C and δD values of dissolved methane present in the pore waters. Results show that both mechanisms are most likely responsible for methane generation at the investigated locations.  相似文献   
136.
Yutaka Uchida 《Solar physics》1982,113(1-2):125-129
Loop flares are given a new magnetodynamic interpretation. In this model, the top of the magnetic loop is heated up by a collision of magnetic twist-wave packets (non-linear torsional Alfven wave) which are produced in the process of the loop emergence, and stored and released from the footpoints of the loop with some retardation. The appearance of the blueshifted component in CaXIX and FeXXV lines a minute or so before the impulsive phase, and the so-called instantaneous acceleration of ions deduced from the nearly simultaneous (with a delay of seconds) occurrence of -ray line emission with the impulsive hard X rays, are very naturally explained in the present model which originally aims at providing an explanation of the source of energy, a blackbox located at the top of the loop in the loop flare theories discussed thus far.  相似文献   
137.
The sector polarity of the interplanetary magnetic field has been inferred daily for the period 1971–1973, using ground level cosmic ray observations. The method depends on the sectors directed towards and away from the Sun being associated with different characteristic variations of the cosmic ray north-south asymmetry. The analysis has a simple basis. The difference between the north and south daily mean intensities of directional telescopes at a single observing station is determined and its value relative to the 27-day average is calculated. The sign (negative or positive) of the value thus derived corresponds to the sector polarity on a daily basis. Good (~76%) agreement is obtained between the polarities inferred indirectly by the present method and those observed directly with the spacecraft magnetometers. We therefore suggest that cosmic ray observations can be used for inferring the sector polarity of the magnetic field in interplanetary space.  相似文献   
138.
A model for diurnal variations of neutral and ionic nitrogen compounds in the thermosphere is reconstructed on the basis of a new photochemical aspect on N(2D), together with new observations of the NO density. The NO density so far measured must be reduced by a factor 2, due to a revision of the fluorescence coefficient for the NO γ-band airglow. Incorporating the quenching reaction of N(2D) with O in the model calculation results in a reduction of the NO density at heights as low as 100 km. These two effects are combined to lead to an evaluation that the N(2D) quantum yield for various possible reactions is as large as 0.9. A smaller rate coefficient for the quenching reaction than that measured in the laboratory, i.e. 1.0 × 10?12cm3sec?1 is favourable for the recent NO observation in the early morning, as well as the observed emission rates of the 5200 A airglow from N(2D) The present model predicts a significant day-to-night variation of N and NO densities at heights above 100 km. Below 100 km, the NO density is fairly stable because of its long chemical time constant. Since the rate coefficient for the conversion of N(4S) to NO is highly temperature dependent, the relative population of N(4S) and NO is very sensitive to the thermospheric temperature variation. Large variations of both N(4S) and NO densities due to the temperature change could occur especially at night. The model is in good agreement with the NO observations so far available in low and middle latitudes, as well as the N observation by the use of a rocket in the twilight.  相似文献   
139.
A multilayer one-dimensional canopy model was developed to analyze the relationship between urban warming and the increase in energy consumption in a big city. The canopy model, which consists of one-dimensional diffusion equations with a drag force, has three major parameters: building width, distance between buildings, and vertical floor density distribution, which is the distribution of a ratio of the number of the buildings that are taller than some level to all the buildings in the area under consideration. In addition, a simplified radiative process in the canopy is introduced. Both the drag force of the buildings and the radiative process depend on the floor density distribution. The thermal characteristics of an urban canopy including the effects of anthropogenic heat are very complicated. Therefore, the focus of this research is mainly on the basic performance of an urban canopy without anthropogenic heat. First, the basic thermal characteristics of the urban canopy alone were investigated. The canopy model was then connected with a three-dimensional mesoscale meteorological model, and on-line calculations were performed for 10 and 11 August, 2002 in Tokyo, Japan. The temperature near the ground surface at the bottom of the canopy was considerably improved by the calculation with the canopy model. However, a small difference remained between the calculation and the observation for minimum temperature. Deceleration of the wind was well reproduced for the velocity at the top of the building by the calculation with the canopy model, in which the floor density distribution was considered.  相似文献   
140.
The CO distribution in the Galaxy is investigated through an analysis of longitude-velocity diagrams of CO emission lines for the two longitude ranges 20°<l<80° and 105°<l<140°. For the kinematics of the Galaxy we adopt the three typical models; the circular rotation, the linear density waves, and the galactic shock waves. It is shown that the distributions and kinematics of CO clouds are consistent with the predictions of the density wave model and the galactic shock model, and that the observed data of CO emissions do not contradict with the claim that the CO clouds form spiral arms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号