首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   18篇
  国内免费   9篇
测绘学   1篇
大气科学   14篇
地球物理   78篇
地质学   51篇
海洋学   122篇
天文学   60篇
综合类   3篇
自然地理   10篇
  2021年   3篇
  2020年   2篇
  2018年   8篇
  2017年   10篇
  2016年   9篇
  2015年   10篇
  2014年   7篇
  2013年   8篇
  2012年   5篇
  2011年   10篇
  2010年   14篇
  2009年   14篇
  2008年   12篇
  2007年   17篇
  2006年   10篇
  2005年   21篇
  2004年   14篇
  2003年   19篇
  2002年   10篇
  2001年   11篇
  2000年   9篇
  1999年   10篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   7篇
  1993年   9篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1987年   8篇
  1986年   9篇
  1985年   3篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   4篇
  1977年   6篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
  1972年   1篇
  1971年   2篇
  1968年   2篇
  1958年   1篇
排序方式: 共有339条查询结果,搜索用时 671 毫秒
251.
This paper estimates property loss and business interruption loss under scenarios of storm surge inundation to explore the economic impact of climate change on Ise Bay, Japan. Scenarios-based analyses are conducted with respect to Typhoon Vera, which caused the most severe storm surge in the recorded history of Japan in 1959. Four different hazard scenarios are chosen from a series of typhoon storm surge inundation simulations: Typhoon Vera’s landfall with respect to the condition of the past seawall; Typhoon Vera’s landfall with respect to the condition of the current seawall; intensifying Typhoon Vera, but retaining its original tracks; and intensifying Typhoon Vera, but choosing the worst tracks from various possible typhoon tracks. Our economic loss estimation takes advantage of fine geographical scale census and economic census data that enable us to understand the spatial distribution of property loss and business interruption loss as well as identify the most potentially affected areas and business sectors on a sub-city scale. By comparing the property loss and business interruption loss caused by different hazard scenarios, the effect of different seawalls is evaluated and the economic impact of future climate change is estimated. The results indicate that although the current seawall can considerably reduce the scale of losses, climate change can cause Ise Bay to experience more serious storm surge inundation. Moreover, the resulting economic losses would increase significantly owing to a combination of climate change and the worst track scenario. It is, therefore, necessary to consider more countermeasures to adapt to climate change in this area.  相似文献   
252.
Geological sequestration of CO2 into depleted hydrocarbon reserviors or saline aquifers presents the enormous potential to reduce greenhouse gas emission from fossil fuels. However, it may give rise to a complicated coupling physical and chemical process. One of the processes is the hydro-mechanical impact of CO2 injection. During the injection project, the increase of pore pressures of storing formations can induce the instability, which finally results in a catastrophic failure of disposal sites. This paper focuses mainly on the role of CO2-saturated water in the fracturing behavior of rocks. To investigate how much the dissolved CO2 can influence the pore pressure change of rocks, acoustic emission (AE) experiments were performed on sandstone and granite samples under triaxial conditions. The main innovation of this paper is to propose a time dependent porosity method to simulate the abrupt failure process, which is observed in the laboratory and induced by the pore pressure change due to the volume dilatancy of rocks, using a finite element scheme associated with two-phase characteristics. The results successfully explained the phenomena obtained in the physical experiments.  相似文献   
253.
The authors have presented the results of inelastic earthquake response analysis of a class of asymmetric building models and concluded that regularly asymmetric buildings excited well into the inelastic range may not be conservatively designed via modal analysis of their elastic models. The purpose of this short communication is to refer to the results in contrast to the authors' and to make some comments on their paper.  相似文献   
254.
255.
Initially amorphous carbonaceous material becomes more crystalline with heating. The structural change depends not only on the maximum attained temperature but also the time‐scale of heating. Raman spectroscopy of natural samples that have been heated for time‐scales of 105 years or greater show that the degree of crystallinity has reached steady‐state. In contrast, laboratory studies show very little change in crystallinity of carbonaceous material (CM) after heating at 1000°C for a time of 3.5 weeks. Better constraints on the time‐scale for crystallization require experiments on time‐scales of years to thousands of years; such long time‐scales can only be derived from natural examples of CM‐bearing rocks that have been heated for a known length of time. Thermal modeling of contact metamorphism developed around a 13 m dike within the Akasaka Limestone in Gifu Prefecture shows the time‐scale of heating is of the order of 1–100 years. Raman spectroscopy reveals a significant increase in the crystallinity of the CM in a region within 3 m from the dike. A comparison between the temperature predicted for the contact aureole and the degree of crystallinity of the carbonaceous material shows that even close to the dike the CM has not reached steady‐state. This change began at over 550°C (modeled temperature) for a time‐scale of heating of a few years. Attaining steady‐state in the crystallization of CM under natural geological condition requires heating on time‐scales greater than about one hundred years. This study shows the utility of using natural laboratory studies to determine the kinetics of CM crystallization in rocks.  相似文献   
256.
Tropical cyclones expose river basins to heavy rainfall and flooding, and cause substantial soil erosion and sediment transport. There is heightened interest in the effects of typhoon floods on river basins in northeast Japan, as the migration of radiocaesium‐bearing soils contaminated by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident will affect future radiation levels. The five main catchments surrounding FDNPP are the Odaka, Ukedo, Maeda, Kuma and Tomioka basins, but little quantitative modelling has been undertaken to identify the sediment redistribution patterns and controlling processes across these basins. Here we address this issue and report catchment‐scale modelling of the five basins using the GETFLOWS simulation code. The three‐dimensional (3D) models of the basins incorporated details of the geology, soil type, land cover, and used data from meteorological records as inputs. The simulation results were checked against field monitoring data for water flow rates, suspended sediment concentrations and accumulated sediment erosion and deposition. The results show that the majority of annual sediment migration in the basins occurs over storm periods, thus making typhoons the main vectors for redistribution. The Ukedo and Tomioka basins are the most important basins in the region in terms of overall sediment transport, followed by the other three basins each with similar discharge amounts. Erosion is strongly correlated with the underlying geology and the surface topography in the study area. A low permeability Pliocene Dainenji formation in the coastal area causes high surface water flow rates and soil erosion. Conversely, erosion is lower in an area with high permeability granite basement rocks between the Hatagawa and Futaba faults in the centre of the study area. Land cover is also a factor controlling differences in erosion and transport rates between forested areas in the west of the study area and predominantly agricultural areas towards the east. The largest sediment depositions occur in the Ogaki and Takigawa Dams, at the confluence of the Takase and Ukedo Rivers, and at the Ukedo River mouth. Having clarified the sediment redistribution patterns and controlling processes, these results can assist the ongoing task of monitoring radioactive caesium redistribution within Fukushima Prefecture, and contribute to the design and implementation of measures to protect health and the environment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
257.
This paper presents a simulation of three components of near-field ground shaking recorded during the main shock at three stations of the September 16, 1978, Tabas (M w = 7.4), Iran, earthquake, close to the causative fault. A hybrid method composed of a discrete wavenumber method developed by Bouchon (Bouchon in Bull Seismol Soc Am 71:959–971, 1981; Cotton and Coutant in Geophys J Int 128:676–688, 1997) and a stochastic finite-fault modeling based on a dynamic corner frequency proposed by Motazedian and Atkinson (Bull Seismol Soc Am 95:995–1010, 2005), modified by Assatourians and Atkinson (Bull Seismol Soc Am 97:935–1949, 2007), is used for generating the seismograms at low (0.1–1.0 Hz) and high frequencies (1.0–20.0 Hz), respectively. The results are validated by comparing the simulated peak acceleration, peak velocity, peak displacement, Arias intensity, the integral of velocity squared, Fourier spectrum and acceleration response spectrum on a frequency-by-frequency basis, the shape of the normalized integrals of acceleration and velocity squared, and the cross-correlation with the observed time-series data. Each characteristic is compared on a scale from 0 to 10, with 10 being perfect agreement. Also, the results are validated by comparing the simulated ground motions with the modified Mercalli intensity observations reported by reconnaissance teams and showed reasonable agreement. The results of the present study imply that the damage distribution pattern of the 1978 Tabas earthquake can be explained by the source directivity effect.  相似文献   
258.
259.
The electroendosmotic flow (EOF), generated by the migration of solvated ions near the charged capillary surface, is an important factor in determining the capillary electrophoretic behaviour of humic substances (HS). We investigated the electrophoretic mobilities of HS fractions of reduced molecular-weight polydispersity extracted from peat and from a spodosol either in the presence or after suppression of the EOF. When the EOF was not suppressed, HS migrated to the cathode in spite of their negative charge. Fractionation of HS according to molecular size was achieved in polyacrylamide-coated capillaries filled with 0.05 M tris-phosphate buffer. In uncoated capillaries filled with the same buffer, all fractions had very close mobilities. Addition of polyethylene glycol MW 4000 at concentrations above its entanglement threshold caused the migration times of larger molecules to increase more than those of smaller molecules. The separation was a linear function of molecular size up to 75000 g mol–1 for peat HS and to 50000 g mol–1 for HS extracted from the spodosol.  相似文献   
260.
Temporal and spatial variability of phytoplankton pigment concentrations in the Japan Sea are described, using monthly mean composite images of the Coastal Zone Color Scanner (CZCS). In order to describe the seasonal changes of pigment concentration from the results of the empirical orthogonal function (EOF) analysis, we selected four areas in the south Japan Sea. The pigment concentrations in these areas show remarkable seasonal variations. Two annual blooms appear in spring and fall. The spring bloom starts in the Japan Sea in February and March, when critical depth (CRD) becomes equal to mixed layer depth (MLD). The spring bloom in the southern areas (April) occurs one month in advance of that in the northern areas (May). This indicates that the pigment concentrations in the southern areas may increase rapidly in comparison with the northern areas since the water temperature increases faster in spring in the southern than in the northern areas. The fall bloom appears first in the southwest region, then in the southeast and northeast regions, finally appearing in the northwest region. Fall bloom appears in November and December when MLD becomes equal to CRD. The fall bloom can be explained by deepening of MLD in the Japan Sea. The pigment concentrations in winter are higher than those in summer. The low pigment concentrations dominate in summer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号